Search

found 698 results

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Research papers, University of Canterbury Library

As the result of the September 4th 2010 Canterbury earthquake and associated aftershocks on February 22nd 2011 and June 13th 2011, final examinations in the two 100 level economics papers at Canterbury University were cancelled at short notice in semester one 2011. The final examination weightings were spread over the remaining assessments to obtain a final grade for students. This paper attempts to establish how different online assessment conditions affect final grade distributions when online assessments are substituted for an invigilated final examination. Pearson correlation coefficients and Spearman rank order correlation coefficients are used to show that there is a greater correlation between online quizzes and invigilated assessments when those quizzes are only available for a restricted period of time, compared to the whole semester. We find that online quizzes are more closely correlated with invigilated assessments when the first attempt at a quiz is recorded, as opposed to the highest of two attempts. We also find that using the first attempt leads to less grade disruption when compared to a “normal” semester that includes a final examination. Finally, the actual impact on student grades when online quizzes are substituted for a final examination is discussed.

Research papers, University of Canterbury Library

The NMIT Arts & Media Building is the first in a new generation of multistorey timber structures. It employs an advanced damage avoidance earthquake design that is a world first for a timber building. Aurecon structural engineers are the first to use this revolutionary Pres-Lam technology developed at the University of Canterbury. This technology marks a fundamental change in design philosophy. Conventional seismic design of multi-storey structures typically depends on member ductility and the acceptance of a certain amount of damage to beams, columns and walls. The NMIT seismic system relies on pairs of coupled LVL shear walls that incorporate high strength steel tendons post-tensioned through a central duct. The walls are centrally fixed allowing them to rock during a seismic event. A series of U-shaped steel plates placed between the walls form a coupling mechanism, and act as dissipators to absorb seismic energy. The design allows the primary structure to remain essentially undamaged while readily replaceable connections act as plastic fuses. In this era where sustainability is becoming a key focus, the extensive use of timber and engineered-wood products such as LVL make use of a natural resource all grown and manufactured within a 100km radius of Nelson. This project demonstrates that there are now cost effective, sustainable and innovative solutions for multi-story timber buildings with potential applications for building owners in seismic areas around the world.

Research papers, University of Canterbury Library

This thesis investigates the relationship between the apocalyptic narrative and the postmodern novel. It explores and builds on Patricia Waugh‟s hypothesis in Practising Postmodernism: Reading Modernism (1992) which suggests that that the postmodern is characterised by an apocalyptic sense of crisis, and argues that there is in fact a strong relationship between the apocalyptic and the postmodern. It does so through an exploration of apocalyptic narratives and themes in five postmodern novels. It also draws on additional supporting material which includes literary and cultural theory and criticism, as well as historical theory. In using the novel as a medium through which to explore apocalyptic narratives, this thesis both assumes and affirms the novel‟s importance as a cultural artefact which reflects the concerns of the age in which it is written. I suggest that each of the novels discussed in this thesis demonstrates the close relationship between the apocalyptic and the postmodern through society‟s concern over the direction of history, the validity of meta-narratives, and other cultural phenomenon, such as war, the development of nuclear weaponry, and terrorism. Although the scope of this thesis is largely confined to the historical-cultural epoch known as postmodernity, it also draws on literature and cultural criticism from earlier periods so as to provide a more comprehensive framework for investigating apocalyptic ideas and their importance inside the postmodern novel. A number of modernist writers are therefore referred to or quoted throughout this thesis, as are other important thinkers from preceding periods whose ideas are especially pertinent. The present thesis was researched and written between March 2010 and August 2011 and is dedicated to all of those people who lost their lives in the apocalyptic events of the February 22nd Christchurch earthquake.

Research papers, University of Canterbury Library

An extensive research program is on-going at the University of Canterbury, New Zealand to develop new technologies to permit the construction of multi-storey timber buildings in earthquake prone areas. The system combines engineered timber beams, columns and walls with ductile moment resisting connections using post-tensioned tendons and eventually energy dissipaters. The extensive experimental testing on post-tensioned timber building systems has proved a remarkable lateral response of the proposed solutions. A wide number of post-tensioned timber subassemblies, including beam-column connections, single or coupled walls and column-foundation connections, have been analysed in static or quasi-static tests. This contribution presents the results of the first dynamic tests carried out with a shake-table. Model frame buildings (3-storey and 5-storey) on one-quarter scale were tested on the shake-table to quantify the response of post-tensioned timber frames during real-time earthquake loading. Equivalent viscous damping values were computed for post-tensioned timber frames in order to properly predict their response using numerical models. The dynamic tests were then complemented with quasi-static push and pull tests performed to a 3-storey post-tensioned timber frame. Numerical models were included to compare empirical estimations versus dynamic and quasi-static experimental results. Different techniques to model the dynamic behaviour of post-tensioned timber frames were explored. A sensitivity analysis of alternative damping models and an examination of the influence of designer choices for the post-tensioning force and utilization of column armouring were made. The design procedure for post-tensioned timber frames was summarized and it was applied to two examples. Inter-storey drift, base shear and overturning moments were compared between numerical modelling and predicted/targeted design values.

Research papers, University of Canterbury Library

This manuscript provides a critical examination of the ground motions recorded in the near-source region resulting from the 22 February 2011 Christchurch earthquake. Particular attention is given to reconciling the observed spatial distribution of ground motions in terms of physical phenomena related to source, path and site effects. The large number of near-source observed strong ground motions show clear evidence of: forward-directivity, basin generated surface waves, liquefaction and other significant nonlinear site response. The pseudo-acceleration response spectra (SA) amplitudes and significant duration of strong motions agree well with empirical prediction models, except at long vibration periods where the influence of basin-generated surface waves and nonlinear site response are significant and not adequately accounted for in empirical SA models. Pseudo-acceleration response spectra are also compared with those observed in the 4 September 2010 Darfield earthquake and routine design response spectra used in order to emphasise the amplitude of ground shaking and elucidate the importance of local geotechnical characteristics on surface ground motions. The characteristics of the observed vertical component accelerations are shown to be strongly dependent on source-to-site distance and are comparable with those from the 4 September 2010 Darfield earthquake, implying the large amplitudes observed are simply a result of many observations at close distances rather than a peculiar source effect.

Research papers, University of Canterbury Library

Structures of the Lowry Peaks Range - Waikari Valley district are complex. The majority comprise three members of a predominantly WSW -ENE striking major northwards-directed, leading edge imbricate thrust system, with associated angular, asymmetric fault-propagation folds. This system forms anomalously within a large NESW trending belt of structures characterising the entire east coast of north Canterbury, both onshore and offshore and terminates westwards against N-S striking, east facing fold-fault zone. The objectives of this study address the origin, geometry and kinematics of the interaction between these diversely trending systems. Stratigraphy and small-scale structures denote three periods of deformation, namely: i) Middle Cretaceous deformation of the basement rocks, ii) weak Middle Oligocene deformation associated with the inception of the plate boundary through the South Island, and iii) major Pliocene - Recent deformation that formed the majority of the above-mentioned structures. Stress tensor analyses within competent basement and limestone cover rocks suggest two sets of sub-horizontal compression, NE-SW and NW-SE, the former likely to relate to a localised earlier period of deformation, now overprinted by the latter. NW-SE oriented sub-horizontal compression correlates well with results from other parts of north Canterbury. The result of NW-SE compression on the W-E to WSW-ENE striking structures is a large component of oblique motion, which is manifest in four ways: i) movement on two, differently oriented splays rather than a single fault strand, ii) the development of a sinuous trace for a number of the major folds, whereby the ends are oriented normal to the compression direction, the centres parallel to the strike of the faults, iii) the development of a number of cross-folds, striking NNE-SSW and iv) the apparently recent development of a strike-slip component on at least one of the major thrust faults. The origin of the W-E, or WSW-ENE striking structures may be reactivation of Late Cretaceous faults, stratigraphic evidence for the existence of a "structural high" (the Hurunui High) over the majority of the area in the Late Cretaceous to Early Eocene times suggests the formation of a W-E trending horst structure, with a corresponding asymmetric graben to the south. The junction of WSW-ENE trending structures with N-S trending structures to the west centres on an alluvial-filled depression, Waikari Flat, into which the structures of the WSW-ENE trending imbricate thrust system plunge, locally curling to the SW at their ends to link with N-S trending structures to the south. Roof thrusting on two orientations, W-E and N-S, towards to SE is currently occurring above these structures. Currently the area is not highly seismically active, although a magnitude ~6.4 Ms earthquake in historic times has been recorded. The effects of tectonics on the drainage of the area does suggest that the majority of the systems, are still potentially active, albeit moving at a comparatively slow rate. The majority of the recent motion appears to be concentrated on the roof-thrusting occurring in Waikari Flat, and uplift along the Lowry Peaks Fault System. Increasing amounts of secondary movement on back-thrusts and cross fractures is also implied for western ends of the major imbricate thrust system. In contrast, the southern-most fault system appears to be largely sustaining dextral strike-slip motion, with some local folding in central portions.

Research papers, University of Canterbury Library

In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.

Research papers, University of Canterbury Library

Extended Direct Analysis (EDA), developed at the University of Canterbury, is an advance on the AISC Direct Analysis method for the analysis of frames subjected to static forces. EDA provides a faster, simple and more rational way to properly consider the second-order effects, initial residual stresses (IRS) and the initial imperfections or steel structures under one directional loading than conventional analysis methods. This research applied the EDA method to quantify the effect of member overstrength on frame behaviour for a single storey frame. Also, the effects of IRS, which were included in the EDA static analysis, but which are not considered explicitly in non-linear seismic analysis, were evaluated in two ways. Firstly, they were considered for simple structures subject to increasing cyclic displacement in different directions. Secondly, incremental dynamic analysis with realistic ground motion was used to quantify the likely effect of IRS in earthquakes. It was found that, contrary to traditional wisdom and practice, greater member strengths can result in lower frame strengths for frames under monotonic lateral loading. The structural lateral capacity of the overstrength case was reduced by 6% compared to the case using the dependable member strengths. Also, it resulted significantly different in member demands. Therefore, it is recommended that when either plastic analysis or EDA is used, that both upper and lower bounds on the likely member strength should be considered to determine the total frame strength and the member demands. Results of push-pull analysis under displacement control showed that for IRS ratio, gamma < 0.5 and axial compressive force ratio, N*/Ns, up to 0.5, IRS did affect the structural behaviour in the first half cycle. However, the behavior in the later cycles was not significantly affected. It also showed that the effect of initial residual stresses in the frame was less significant than for the column alone when the column was subjected to similar axial compressive force. The incremental dynamic analysis results from both cantilever column and the three-storey steel frame showed that by increasing gamma = 0 to 0.5, the effect of IRS on seismic responses, based on the 50% confidence level, was less than 3% for N*/Ns, up to 0.5.

Research papers, University of Canterbury Library

Since September 2010 Christchurch, New Zealand, has experienced a number of significant earthquakes. In addition to loss of life, this has resulted in significant destruction to infrastructure, including road corridors; and buildings, especially in the central city, where it has been estimated that 60% of buildings will need to be rebuilt. The rebuild and renewal of Christchurch has initially focused on the central city under the direction of the Christchurch City Council. This has seen the development of a draft Central City Plan that includes a number of initiatives that should encourage the use of the bicycle as a mode of transport. The rebuild and renewal of the remainder of the city is under the jurisdiction of a specially set up authority, the Christchurch Earthquake Recovery Authority (CERA). CERA reports to an appointed Minister for Canterbury Earthquake Recovery, who is responsible for coordinating the planning, spending, and actual rebuilding work needed for the recovery. Their plans for the renewal and rebuild of the remainder of the city are not yet known. This presentation will examine the potential role of the bicycle as a mode of transport in a rebuilt Christchurch. The presentation will start by describing the nature of damage to Christchurch as a result of the 2010 and 2011 earthquakes. It will then review the Central City Plan (the plan for the rebuild and renewal for central Christchurch) focusing particularly on those aspects that affect the role of the bicycle. The potential for the success of this plan will be assessed. It will specifically reflect on this in light of some recent research in Christchurch that examined the importance of getting infrastructure right if an aim of transport planning is to attract new people to cycle for utilitarian reasons.

Research papers, University of Canterbury Library

The Porters Pass fault (PPF) is a prominent element of the Porters Pass-Amberley Fault Zone (PPAFZ) which forms a broad zone of active earth deformation ca 100 km long, 60-90 km west and north of Christchurch. For a distance of ca 40 km the PPF is defined by a series of discontinuous Holocene active traces between the Rakaia and Waimakariri Rivers. The amount of slip/event and the timing of paleoearthquakes are crucial components needed to estimate the earthquake potential of a fault. Movement was assumed to be, coseismic and was quantified by measuring displaced geomorphic features using either tape measure or surveying equipment. Clustering of offset data suggests that four to five earthquakes occurred on the PPF during the Holocene and these range between ca 5-7 m/event. Timing information was obtained from four trenches excavated across the fault and an auger adjacent to the fault. Organic samples from these sites were radiocarbon dated and used in conjunction with data from previous studies to identify the occurrence of at least four earthquakes at 8500 ± 200, 5300 ± 700, 2500 ± 200 and 1000 ± 100 years B.P. Evidence suggests that an additional event is also possible at 6200 ± 500 years B.P. The ~1000, 5300 and 6200 years B.P. paleoearthquakes were previously unrecognised, while the 500 year event previously inferred from rock-avalanche data has been discarded. The present data set produces recurrence intervals of ~2000-2500 years for the Holocene. The identification of only one Holocene PPF rupture to the west of Red Lakes indicates the presence of a segment boundary that prevents the propagation of rupture beyond this point. This is consistent with displacement data and results in slip rates of 0.5-0.7 mm/yr and 2.5-3.4 mm/yr to the west and east of Red Lakes respectively. It is possible that the nearby extensional Red Hill Fault influences PPF rupture propagation. The combination of geometric, slip rate and timing data has enabled the magnitude of prehistoric earthquakes on the PPF to be estimated. These magnitudes range from an average of between 6.9 for a fault rupture from Waimakariri River to Red Lakes, to a maximum of 7.4 that ruptures the entire length of the PPAFZ, including the full length of the PPF. These estimates are approximately consistent with previous magnitude estimates along the full length of the PPAFZ of between 7.0 and 7.5.

Research papers, University of Canterbury Library

Depending on their nature and severity, disasters can create large volumes of debris and waste. Waste volumes from a single event can be the equivalent of many times the annual waste generation rate of the affected community. These volumes can overwhelm existing solid waste management facilities and personnel. Mismanagement of disaster waste can affect both the response and long term recovery of a disaster affected area. Previous research into disaster waste management has been either context specific or event specific, making it difficult to transfer lessons from one disaster event to another. The aim of this research is to develop a systems understanding of disaster waste management and in turn develop context- and disaster-transferrable decision-making guidance for emergency and waste managers. To research this complex and multi-disciplinary problem, a multi-hazard, multi-context, multi-case study approach was adopted. The research focussed on five major disaster events: 2011 Christchurch earthquake, 2009 Victorian Bushfires, 2009 Samoan tsunami, 2009 L’Aquila earthquake and 2005 Hurricane Katrina. The first stage of the analysis involved the development of a set of ‘disaster & disaster waste’ impact indicators. The indicators demonstrate a method by which disaster managers, planners and researchers can simplify the very large spectra of possible disaster impacts, into some key decision-drivers which will likely influence post-disaster management requirements. The second stage of the research was to develop a set of criteria to represent the desirable environmental, economic, social and recovery effects of a successful disaster waste management system. These criteria were used to assess the effectiveness of the disaster waste management approaches for the case studies. The third stage of the research was the cross-case analysis. Six main elements of disaster waste management systems were identified and analysed. These were: strategic management, funding mechanisms, operational management, environmental and human health risk management, and legislation and regulation. Within each of these system elements, key decision-making guidance (linked to the ‘disaster & disaster waste’ indicators) and management principles were developed. The ‘disaster & disaster waste’ impact indicators, the effects assessment criteria and management principles have all been developed so that they can be practically applied to disaster waste management planning and response in the future.

Research papers, University of Canterbury Library

Following exposure to trauma, stress reactions are initially adaptive. However, some individuals’ psychological response can become maladaptive with long-lasting impairment to functioning. Most people with initial symptoms of stress recover, and thus it is important to distinguish individuals who are at risk of continuing difficulties so that resources are allocated appropriately. Investigations of predictors of PTSD development have largely focused on relational and combat-related trauma, with very limited research looking at natural disasters. This study assessed the nature and severity of psychological difficulties experienced in 101 people seeking treatment following exposure to a significant earthquake that killed 185 people. Peritraumatic dissociation, posttraumatic stress symptoms, symptoms of anxiety, symptoms of depression, and social isolation were assessed. Descriptive analyses revealed the sample to be a highly impaired group, with particularly high levels of posttraumatic stress symptoms. Path analysis was used to determine whether the experience of some psychological difficulties predicted experience of others. As hypothesised, peritraumatic dissociation was found to predict posttraumatic stress symptoms and symptoms of anxiety. Posttraumatic stress symptoms then predicted symptoms of anxiety and symptoms of depression. Depression and anxiety were highly correlated. Contrary to expectations, social isolation was not significantly related to any other psychological variables. These findings justify the provision of psychological support following a natural disaster and suggest the benefit of assessing peritraumatic dissociation and posttraumatic stress symptoms soon after the event to identify people in need of monitoring and intervention.

Research papers, University of Canterbury Library

Impact between structures of bridge sections can play a major, unexpected role in seismic structural damage. Linear and non-linear models are developed to analyze structural impact and response of two single-degree-of-freedom structures, representing adjacent buildings or bridge sections. The analyses presented assess probability of impact, displacement change due to impact, and the probability of increased displacement due to impact. These are assessed over a matrix of structural periods for each degree-of-freedom, different impact coefficients of restitution, and a probabilistically scaled suite of earthquake events. Linear versus non-linear effects are assessed using a Ramberg-Osgood non-linear model for column inelasticity. The normalized distance, or gap-ratio (GR), defined as a percentage of the summed spectral displacements, is used to create probabilistic design requirements. Increasing GR and structural periods that are similar (T2/T1~0.8-1.25) significantly decrease the likelihood of impact, and vice-versa. Including column inelasticity and decreasing coefficient of restitution decrease displacement increases due to impact and thus reduce potential damage. A minimum GR~0.5-0.9 ensures that any displacement increases will be less than 10% for 90% of ground motions over all structural period combinations (0.2-5.0sec). These results enable probabilistic design guidelines to manage undesirable effects of impact– an important factor during the recent Canterbury, New Zealand Earthquakes.

Research papers, University of Canterbury Library

Small, tight-knit communities, are complex to manage from outside during a disaster. The township of Lyttelton, New Zealand, and the communities of Corsair Bay, Cass Bay, and Rapaki to the east, are especially more so difficult due to the terrain that encloses them, which caused them to be cut-off from Christchurch, the largest city in the South Island, barely 10 km away, after the Mw 7.1 Darfield Earthquake and subsequent Canterbury Earthquake Sequence. Lyttelton has a very strong and deep-rooted community spirit that draws people to want to be a part of Lyttelton life. It is predominantly residential on the slopes, with retail space, service and light industry nestled near the harbour. It has heritage buildings stretching back to the very foundation of Canterbury yet hosts the largest, modern deep-water port for the region. This study contains two surveys: one circulated shortly before the Darfield Earthquake and one circulated in July 2011, after the Christchurch and Sumner Earthquakes. An analytical comparison of the participants’ household preparedness for disaster before the Darfield Earthquake and after the Christchurch and Sumner Earthquakes was performed. A population spatiotemporal distribution map was produced that shows the population in three-hourly increments over a week to inform exposure to vulnerability to natural hazards. The study went on to analyse the responses of the participants in the immediate period following the Chrsitchurch and Sumner Earthquakes, including their homeward and subsequent journeys, and the decision to evacuate or stay in their homes. Possible predictors to a decision to evacuate some or all members of the household were tested. The study also asked participants’ views on the events since September 2010 for analysis.

Research papers, University of Canterbury Library

This paper provides an overview of the salient aspects of the dense array of ground motions observed in the 4 September 2010 Darfield and 22 February 2011 Christchurch earthquakes. Particular attention is given to inferred physical reasons for the observed ground motions, which include: (i) source features such as forward directivity effects; (ii) The effects of the Canterbury Plains sedimentary basin on basin-generated surface waves, and waveguide effects through the region; and (iii) the importance of local site response as evidenced by observations of large long period amplification and liquefaction. The significance of vertical ground motion intensity is also examined.

Research papers, University of Canterbury Library

This paper provides a comparison between the strong ground motions observed in the Christchurch central business district in the 4 September 2010 Mw7.1 Darfield, and 22 February 2011 Mw6.3 Christchurch earthquakes with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. Despite Tokyo being located approximately 110km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were strong enough to cause structural damage in Tokyo and also significant liquefaction to loose reclaimed soils in Tokyo bay. Comparisons include the strong motion time histories, response spectra, significant durations and arias intensity. The implications for large earthquakes in New Zealand are also briefly discussed.

Research papers, University of Canterbury Library

The University of Canterbury has initialized a research program focusing on the seismic sustainability of structures. As part of this program, the relative seismic sustainability of various structures will be assessed to identify those with the highest sustainability for the Christchurch rebuild and general use in New Zealand. This preliminary case study assesses one reinforced concrete (RC) frame structure and one RC wall structure. The scenario loss is evaluated for two earthquake records considering direct losses only in order to explain and illustrate the methodology.

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing an estimated 181 fatalities and severely damaging thousands of residential and commercial buildings. This paper presents a summary of some of the observations made by the NSF-sponsored GEER Team regarding the geotechnical/geologic aspects of this earthquake. The Team focused on documenting the occurrence and severity of liquefaction and lateral spreading, performance of building and bridge foundations, buried pipelines and levees, and significant rockfalls and landslides. Liquefaction was pervasive and caused extensive damage to residential properties, water and wastewater networks, high-rise buildings, and bridges. Entire neighborhoods subsided, resulting in flooding that caused further damage. Additionally, liquefaction and lateral spreading resulted in damage to bridges and to stretches of levees along the Waimakariri and Kaiapoi Rivers. Rockfalls and landslides in the Port Hills damaged several homes and caused several fatalities.

Research papers, University of Canterbury Library

This paper examines the consistency of seismicity and ground motion models, used for seismic hazard analysis in New Zealand, with the observations in the Canterbury earthquakes. An overview is first given of seismicity and ground motion modelling as inputs of probabilistic seismic hazard analysis, whose results form the basis for elastic response spectra in NZS1170.5:2004. The magnitude of earthquakes in the Canterbury earthquake sequence are adequately allowed for in the current NZ seismicity model, however the consideration of ‘background’ earthquakes as point sources at a minimum depth of 10km results in up to a 60% underestimation of the ground motions that such events produce. The ground motion model used in conventional NZ seismic hazard analysis is shown to provide biased predictions of response spectra (over-prediction near T=0.2s , and under-predictions at moderate-to-large vibration periods). Improved ground motion prediction can be achieved using more recent NZ-specific models.

Research papers, University of Canterbury Library

The 22nd February 2011, Mw 6.3 Christchurch earthquake in New Zealand caused major damage to critical infrastructure, including the healthcare system. The Natural Hazard Platform of NZ funded a short-term project called “Hospital Functions and Services” to support the Canterbury District Health Board’s (CDHB) efforts in capturing standardized data that describe the effects of the earthquake on the Canterbury region’s main hospital system. The project utilised a survey tool originally developed by researchers at Johns Hopkins University (JHU) to assess the loss of function of hospitals in the Maule and Bío-Bío regions following the 27th February 2010, Mw 8.8 Maule earthquake in Chile. This paper describes the application of the JHU tool for surveying the impact of Christchurch earthquake on the CDHB Hospital System, including the system’s residual capacity to deliver emergency response and health care. A short summary of the impact of the Christchurch earthquake on other CDHB public and private hospitals is also provided. This study demonstrates that, as was observed in other earthquakes around the world, the effects of damage to non-structural building components, equipment, utility lifelines, and transportation were far more disruptive than the minor structural damage observed in buildings (FEMA 2007). Earthquake related complications with re-supply and other organizational aspects also impacted the emergency response and the healthcare facilities’ residual capacity to deliver services in the short and long terms.

Research papers, University of Canterbury Library

The Canterbury earthquake sequence in New Zealand’s South Island induced widespread liquefaction phenomena across the Christchurch urban area on four occasions (4 Sept 2010; 22 Feb; 13 June; 23 Dec 2011), that resulted in widespread ejection of silt and fine sand. This impacted transport networks as well as infiltrated and contaminated the damaged storm water system, making rapid clean-up an immediate post-earthquake priority. In some places the ejecta was contaminated by raw sewage and was readily remobilised in dry windy conditions, creating a long-term health risk to the population. Thousands of residential properties were inundated with liquefaction ejecta, however residents typically lacked the capacity (time or resources) to clean-up without external assistance. The liquefaction silt clean-up response was co-ordinated by the Christchurch City Council and executed by a network of contractors and volunteer groups, including the ‘Farmy-Army’ and the ‘Student-Army’. The duration of clean-up time of residential properties and the road network was approximately 2 months for each of the 3 main liquefaction inducing earthquakes; despite each event producing different volumes of ejecta. Preliminary cost estimates indicate total clean-up costs will be over NZ$25 million. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill since the beginning of the Canterbury earthquakes sequence. The liquefaction clean-up experience in Christchurch following the 2010-2011 earthquake sequence has emerged as a valuable case study to support further analysis and research on the coordination, management and costs of large volume deposition of fine grained sediment in urban areas.

Research papers, University of Canterbury Library

The devastating magnitude M6.3 earthquake, that struck the city of Christchurch at 12:51pm on Tuesday 22 February 2011, caused widespread damage to the lifeline systems. Following the event, the Natural Hazard Research Platform (NHRP) of New Zealand funded a short-term project “Recovery of Lifelines” aiming to: 1) coordinate the provision of information to meet lifeline short-term needs; and to 2) facilitate the accessibility to lifelines of best practice engineering details, along with hazards and vulnerability information already available from the local and international scientific community. This paper aims to briefly summarise the management of the recovery process for the most affected lifelines systems, including the electric system, the road, gas, and the water and wastewater networks. Further than this, the paper intends to discuss successes and issues encountered by the “Recovery of Lifelines” NHRP project in supporting lifelines utilities.

Research papers, University of Canterbury Library

This paper discusses the seismic performance of the standard RC office building in Christchurch that is given as a structural design example in NZS3101, the concrete structures seismic standard in New Zealand. Firstly the push-over analysis was carried out to evaluate the lateral load carrying capacity of the RC building and then to compare that carrying capacity with the Japanese standard law. The estimated figures showed that the carrying capacity of the New Zealand standard RC office building of NZS3101:2006 was about one third of Japanese demanded carrying capacity. Secondly, time history analysis of the multi-mass system was performed to estimate the maximum response story drift angle using recorded ground motions. Finally, a three-dimensional analysis was carried out to estimate the response of the building to the 22nd February, 2011 Canterbury earthquake. The following outcomes were obtained. 1) The fundamental period of the example RC building is more than twice that of Japanese simplified calculation, 2) The example building’s maximum storey drift angle reached 2.5% under the recorded ground motions. The main purpose of this work is to provide background information of seismic design practice for the reconstruction of Christchurch.

Research papers, University of Canterbury Library

The 4 September 2010 Darfield and 22 February 2011 Christchurch earthquakes caused significant damage to Christchurch and surrounding suburbs as a result of the widespread liquefaction and lateral spreading that occurred. Ground surveying-based field investigations were conducted following these two events in order to measure permanent ground displacements in areas significantly affected by lateral spreading. Data was analysed with respect to the distribution of lateral spreading vs. distance from the waterway, and the failure patterns observed. Two types of failure distribution patterns were observed, a typical distributed pattern and an atypical block failure. Differences in lateral spreading measurements along adjacent banks of the Avon River in the area of Dallington were also examined. The spreading patterns between the adjacent banks varied with the respective river geometry and/or geotechnical conditions at the banks.

Research papers, University of Canterbury Library

On Tuesday 22 February 2011, a 6.3 magnitude earthquake struck Christchurch, New Zealand’s second largest city. The ‘earthquake’ was in fact an aftershock to an earlier 7.1 magnitude earthquake that had occurred on Saturday 4 September 2010. There were a number of key differences between the two events that meant they had dramatically different results for Christchurch and its inhabitants. The 22 February 2011 event resulted in one of New Zealand’s worst natural disasters on record, with 185 fatalities occurring and hundreds more being injured. In addition, a large number of buildings either collapsed or were damaged to the point where they needed to be totally demolished. Since the initial earthquake in September 2010, a large amount of building-related research has been initiated in New Zealand to investigate the impact of the series of seismic events – the major focus of these research projects has been on seismic, structural and geotechnical engineering matters. One project, however, conducted jointly by the University of Canterbury, the Fire Protection Association of New Zealand and BRANZ, has focused on the performance of fire protection systems in the earthquakes and the effectiveness of the systems in the event of post-earthquake fires occurring. Fortunately, very few fires actually broke out following the series of earthquake events in Christchurch, but fire after earthquakes still has significant implications for the built environment in New Zealand, and the collaborative research has provided some invaluable insight into the potential threat posed by post-earthquake fires in buildings. As well as summarising the damage caused to fire protection systems, this paper discusses the flow-on effect for designing structures to withstand post-earthquake fires. One of the underlying issues that will be explored is the existing regulatory framework in New Zealand whereby structural earthquake design and structural design for fire are treated as discrete design scenarios.

Research papers, University of Canterbury Library

The current study examined the psychological effects of recurring earthquake aftershocks in the city of Christchurch, New Zealand, which began in September 2010. Although it has been identified that exposure to ongoing adverse events such as continuing terrorist attacks generally leads to the development of increasing symptomology over time, differences in perceived controllability and blame between man-made and natural adverse events may contribute to differences in symptom trajectories. Residents of two Christchurch suburbs differentially affected by the earthquakes (N = 128) were assessed on measures of acute stress disorder, generalised anxiety, and depression, at two time points approximately 4-5 months apart, in order to determine whether symptoms intensified or declined over time in the face of ongoing aftershocks. At time 1, clinically significant levels of acute stress were identified in both suburbs, whereas clinical elevations in depression and anxiety were only evident in the most affected suburb. By time 2, both suburbs had fallen below the clinical range on all three symptom types, identifying a pattern of habituation to the aftershocks. Acute stress symptoms at time 2 were the most highly associated with the aftershocks, compared to symptoms of generalised anxiety and depression which were identified by participant reports to be more likely associated with other earthquake-related factors, such as insurance troubles and less frequent socialisation. The finding that exposure to ongoing earthquake aftershocks leads to a decline in symptoms over time may have important implications for the assessment of traumatic stress-related disorders, and provision of services following natural, as compared to man-made, adverse events.

Research papers, University of Canterbury Library

The September 2010 Canterbury and February 2011 Christchurch earthquakes and associated aftershocks have shown that the isolator displacement in Christchurch Women's Hospital (Christchurch City's only base-isolated structure) was significantly less than expected. Occupant accounts of the events have also indicated that the accelerations within the hospital superstructure were larger than would usually be expected within a base-isolated structure and that residual low-level shaking lasts for a longer period of time following the strong-motion of an event than for non-isolated structures.

Research papers, University of Canterbury Library

High-Force-to-Volume lead dampers (HF2V) have been recently developed through an experimental research program at University of Canterbury – New Zealand. Testing of the device and applications on beam column joints have demonstrated stable hysteretic behaviour with almost no damage. This paper reports testing of HF2V devices with straight, bulged and constricted shaft configurations subjected to velocities of 0.15 - 5.0mm/s. The effect of the shaft configuration on the hysteresis loop shape, design relationships and the effect of the velocity on the resistive force of the device are described. Results show that hysteresis loop shape of the device is almost square regardless of the shaft configuration, and that devices are characterized by noticeable velocity dependence in the range of 0.15-1.0mm/s.

Research papers, University of Canterbury Library

Despite over a century of study, the relationship between lunar cycles and earthquakes remains controversial and difficult to quantitatively investigate. Perhaps as a consequence, major earthquakes around the globe are frequently followed by 'prediction' claims, using lunar cycles, that generate media furore and pressure scientists to provide resolute answers. The 2010-2011 Canterbury earthquakes in New Zealand were no exception; significant media attention was given to lunarderived earthquake predictions by non-scientists, even though the predictions were merely 'opinions' and were not based on any statistically robust temporal or causal relationships. This thesis provides a framework for studying lunisolar earthquake temporal relationships by developing replicable statistical methodology based on peer reviewed literature. Notable in the methodology is a high accuracy ephemeris, called ECLPSE, designed specifically by the author for use on earthquake catalogs, and a model for performing phase angle analysis. The statistical tests were carried out on two 'declustered' seismic catalogs, one containing the aftershocks from the Mw7.1 earthquake in Canterbury, and the other containing Australian seismicity from the past two decades. Australia is an intraplate setting far removed from active plate boundaries and Canterbury is proximal to a plate boundary, thus allowing for comparison based on tectonic regime and corresponding tectonic loading rate. No strong, conclusive, statistical correlations were found at any level of the earthquake catalogs, looking at large events, onshore events, offshore events, and the fault type of some events. This was concluded using Schuster's test of significance with α=5% and analysis of standard deviations. A few weak correlations, with p-5-10% of rejecting the null hypothesis, and anomalous standard deviations were found, but these are difficult to interpret. The results invalidate the statistical robustness of 'earthquake predictions' using lunisolar parameters in this instance. An ambitious researcher could improve on the quality of the results and on the range of parameters analyzed. The conclusions of the thesis raise more questions than answers, but the thesis provides an adaptable methodology that can be used to further investigation the problem.