Search

found 89 results

Research papers, University of Canterbury Library

This poster presents preliminary results of ongoing experimental campaigns at the Universities of Auckland and Canterbury, aiming at investigating the seismic residual capacity of damaged reinforced concrete plastic hinges, as well as the effectiveness of epoxy injection techniques for restoring their stiffness, energy dissipation, and deformation capacity characteristics. This work is part of wider research project which started in 2012 at the University of Canterbury entitled “Residual Capacity and Repairing Options for Reinforced Concrete Buildings”, funded by the Natural Hazards Research Platform (NHRP). This research project aims at gaining a better understanding and providing the main end-users and stakeholders (practitioner engineers, owners, local and government authorities, insurers, and regulatory agencies) with comprehensive evidence-based information and practical guidelines to assess the residual capacity of damaged reinforced concrete buildings, as well as to evaluate the feasibility of repairing and thus support their delicate decision-making process of repair vs. demolition or replacement.

Research papers, University of Canterbury Library

This poster presents work to date on ground motion simulation validation and inversion for the Canterbury, New Zealand region. Recent developments have focused on the collection of different earthquake sources and the verification of the SPECFEM3D software package in forward and inverse simulations. SPECFEM3D is an open source software package which simulates seismic wave propagation and performs adjoint tomography based upon the spectral-element method. Figure 2: Fence diagrams of shear wave velocities highlighting the salient features of the (a) 1D Canterbury velocity model, and (b) 3D Canterbury velocity model. Figure 5: Seismic sources and strong motion stations in the South Island of New Zealand, and corresponding ray paths of observed ground motions. Figure 3: Domain used for the 19th October 2010 Mw 4.8 case study event including the location of the seismic source and strong motion stations. By understanding the predictive and inversion capabilities of SPECFEM3D, the current 3D Canterbury Velocity Model can be iteratively improved to better predict the observed ground motions. This is achieved by minimizing the misfit between observed and simulated ground motions using the built-in optimization algorithm. Figure 1 shows the Canterbury Velocity Model domain considered including the locations of small-to-moderate Mw events [3-4.5], strong motion stations, and ray paths of observed ground motions. The area covered by the ray paths essentially indicates the area of the model which will be most affected by the waveform inversion. The seismic sources used in the ground motion simulations are centroid moment tensor solutions obtained from GeoNet. All earthquake ruptures are modelled as point sources with a Gaussian source time function. The minimum Mw limit is enforced to ensure good signal-to-noise ratio and well constrained source parameters. The maximum Mw limit is enforced to ensure the point source approximation is valid and to minimize off-fault nonlinear effects.

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading during earthquakes poses a significant hazard to the built environment, as observed in Christchurch during the 2010 to 2011 Canterbury Earthquake Sequence (CES). It is critical that geotechnical earthquake engineers are able to adequately predict both the spatial extent of lateral spreads and magnitudes of associated ground movements for design purposes. Published empirical and semi-empirical models for predicting lateral spread displacements have been shown to vary by a factor of <0.5 to >2 from those measured in parts of Christchurch during CES. Comprehensive post- CES lateral spreading studies have clearly indicated that the spatial distribution of the horizontal displacements and extent of lateral spreading along the Avon River in eastern Christchurch were strongly influenced by geologic, stratigraphic and topographic features.

Research papers, University of Canterbury Library

As a result of the Canterbury earthquakes, over 60% of the concrete buildings in the Christchurch Central Business District have been demolished. This experience has highlighted the need to provide guidance on the residual capacity and repairability of earthquake-damaged concrete buildings. Experience from 2010 Chile indicates that it is possible to repair severely damaged concrete elements (see photo at right), although limited testing has been performed on such repaired components. The first phase of this project is focused on the performance of two lightly-reinforced concrete walls that are being repaired and re-tested after damage sustained during previous testing.

Research papers, University of Canterbury Library

In 2010 and 2011 a series of earthquakes hit the central region of Canterbury, New Zealand, triggering widespread and damaging liquefaction in the area of Christchurch. Liquefaction occurred in natural clean sand deposits, but also in silty (fines-containing) sand deposits of fluvial origin. Comprehensive research efforts have been subsequently undertaken to identify key factors that influenced liquefaction triggering and severity of its manifestation. This research aims at evaluating the effects of fines content, fabric and layered structure on the cyclic undrained response of silty soils from Christchurch using Direct Simple Shear (DSS) tests. This poster outlines preliminary calibration and verification DSS tests performed on a clean sand to ensure reliability of testing procedures before these are applied to Christchurch soils.

Research papers, University of Canterbury Library

The operation of telecommunication networks is critical during business as usual times, and becomes most vital in post-disaster scenarios, when the services are most needed for restoring other critical lifelines, due to inherent interdependencies, and for supporting emergency and relief management tasks. In spite of the recognized critical importance, the assessment of the seismic performance for the telecommunication infrastructure appears to be underrepresented in the literature. The FP6 QuakeCoRE project “Performance of the Telecommunication Network during the Canterbury Earthquake Sequence” will provide a critical contribution to bridge this gap. Thanks to an unprecedented collaboration between national and international researchers and highly experienced asset managers from Chorus, data and evidences on the physical and functional performance of the telecommunication network after the Canterbury Earthquakes 2010-2011 have been collected and collated. The data will be processed and interpreted aiming to reveal fragilities and resilience of the telecommunication networks to seismic events

Research papers, University of Canterbury Library

The 2010-2011 Canterbury earthquake sequence, and the resulting extensive data sets on damaged buildings that have been collected, provide a unique opportunity to exercise and evaluate previously published seismic performance assessment procedures. This poster provides an overview of the authors’ methodology to perform evaluations with two such assessment procedures, namely the P-58 guidelines and the REDi Rating System. P-58, produced by the Federal Emergency Management Agency (FEMA) in the United States, aims to facilitate risk assessment and decision-making by quantifying earthquake ground shaking, structural demands, component damage and resulting consequences in a logical framework. The REDi framework, developed by the engineering firm ARUP, aids stakeholders in implementing resilience-based earthquake design. Preliminary results from the evaluations are presented. These have the potential to provide insights on the ability of the assessment procedures to predict impacts using “real-world” data. However, further work remains to critically analyse these results and to broaden the scope of buildings studied and of impacts predicted.

Research papers, University of Canterbury Library

The University of Canterbury is known internationally for the Origins of New Zealand English (ONZE) corpus (see Gordon et al 2004). ONZE is a large collection of recordings from people born between 1851 and 1984, and it has been widely utilised for linguistic and sociolinguistic research on New Zealand English. The ONZE data is varied. The recordings from the Mobile Unit (MU) are interviews and were collected by members of the NZ Broadcasting service shortly after the Second World War, with the aim of recording stories from New Zealanders outside the main city centres. These were supplemented by interview recordings carried out mainly in the 1990s and now contained in the Intermediate Archive (IA). The final ONZE collection, the Canterbury Corpus, is a set of interviews and word-list recordings carried out by students at the University of Canterbury. Across the ONZE corpora, there are different interviewers, different interview styles and a myriad of different topics discussed. In this paper, we introduce a new corpus – the QuakeBox – where these contexts are much more consistent and comparable across speakers. The QuakeBox is a corpus which consists largely of audio and video recordings of monologues about the 2010-2011 Canterbury earthquakes. As such, it represents Canterbury speakers’ very recent ‘danger of death’ experiences (see Labov 2013). In this paper, we outline the creation and structure of the corpus, including the practical issues involved in storing the data and gaining speakers’ informed consent for their audio and video data to be included.

Research papers, University of Canterbury Library

This paper presents on-going challenges in the present paradigm shift of earthquakeinduced ground motion prediction from empirical to physics-based simulation methods. The 2010-2011 Canterbury and 2016 Kaikoura earthquakes are used to illustrate the predictive potential of the different methods. On-going efforts on simulation validation and theoretical developments are then presented, as well as the demands associated with the need for explicit consideration of modelling uncertainties. Finally, discussion is also given to the tools and databases needed for the efficient utilization of simulated ground motions both in specific engineering projects as well as for near-real-time impact assessment.

Research papers, University of Canterbury Library

The level of destruction from the 2011 Christchurch earthquakes led to changes in the New Zealand seismic building code. The destruction showed that the NZ building codes did not fully performed to expectation and needed Improvement to ensure that impact of future earthquakes would be minimised. The building codes have been amended to improve buildings resilience to earthquake and other related extreme loading conditions. Rebuilding Christchurch with the new modifications in the seismic building code comes with its own unique challenges to the entire system. This project investigates the impact of rebuilding Christchurch with the new seismic Building codes in terms of how the new changes affected the building industry and the management of construction.

Research papers, University of Canterbury Library

1. INTRODUCTION. Earthquakes and geohazards, such as liquefaction, landslides and rock falls, constitute a major risk for New Zealand communities and can have devastating impacts as the Canterbury 2010/2011 experience shows. Development patterns expose communities to an array of natural hazards, including tsunamis, floods, droughts, and sea level rise amongst others. Fostering community resilience is therefore vitally important. As the rhetoric of resilience is mainstreamed into the statutory framework, a major challenge emerges: how can New Zealand operationalize this complex and sometimes contested concept and build ‘community capitals’? This research seeks to provide insights to this question by critically evaluating how community capitals are conceptualized and how they can contribute to community resilience in the context of the Waimakariri District earthquake recovery and regeneration process.

Research papers, University of Canterbury Library

Our poster will present on-going QuakeCoRE-founded work on strong motion seismology for Dunedin-Mosgiel area, focusing on ground motion simulations for Dunedin Central Business District (CBD). Source modelling and ground motion simulations are being carried out using the SCEC (Southern California Earthquakes Center) Broad Band simulation Platform (BBP). The platform computes broadband (0-10 Hz) seismograms for earthquakes and was first implemented at the University of Otago in 2016. As large earthquakes has not been experienced in Dunedin in the time of period of instrumental recording, user-specified scenario simulations are of great value. The Akatore Fault, the most active fault in Otago and closest major fault to Dunedin, is the source focused on in the present study. Simulations for various Akatore Fault source scenarios are run and presented. Path and site effects are key components considered in the simulation process. A 1D shear wave velocity profile is required by SCEC BBP, and this is being generated to represent the Akatore-to-CBD path and site within the BBP. A 3D shear velocity model, with high resolution within Dunedin CBD, is being developed in parallel with this study (see Sangster et al. poster). This model will be the basis for developing a 3D shear wave velocity model for greater Dunedin-Mosgiel area for future ground motion simulations, using Canterbury software (currently under development).

Research papers, University of Canterbury Library

Introduction In 2011 Christchurch city centre was partially destroyed by an earthquake. Government-led anchor projects were tasked with bringing Christchurch back from rubble. After a period of 7 years out of 16 proposed projects, 10 are already over time for their initial completion dates and the ones completed, are under scrutiny for failing to deliver their expected outcome.

Research papers, University of Canterbury Library

INTRODUCTION This project falls under the Flagship 3: Wellington Coordinated Project. It supports other projects within FP3 to create a holistic understanding of risks posed by collapsed buildings due to future earthquake/s and the secondary consequences of cordoning in the short, mid and long term. Cordoning of the Christchurch CBD for more than two years and its subsequent implications on people and businesses had a significant impact on the recovery of Christchurch. Learning from this and experiences from the Kaikōura earthquake (where cordons were also established around selected buildings, Figure 3) have highlighted the need to understand the effects of cordons and plan for it before an earthquake occurs

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence 2010-2011 (CES) induced widespread liquefaction in many parts of Christchurch city. Liquefaction was more commonly observed in the eastern suburbs and along the Avon River where the soils were characterised by thick sandy deposits with a shallow water table. On the other hand, suburbs to the north, west and south of the CBD (e.g. Riccarton, Papanui) exhibited less severe to no liquefaction. These soils were more commonly characterised by inter-layered liquefiable and non-liquefiable deposits. As part of a related large-scale study of the performance of Christchurch soils during the CES, detailed borehole data including CPT, Vs and Vp have been collected for 55 sites in Christchurch. For this subset of Christchurch sites, predictions of liquefaction triggering using the simplified method (Boulanger & Idriss, 2014) indicated that liquefaction was over-predicted for 94% of sites that did not manifest liquefaction during the CES, and under-predicted for 50% of sites that did manifest liquefaction. The focus of this study was to investigate these discrepancies between prediction and observation. To assess if these discrepancies were due to soil-layer interaction and to determine the effect that soil stratification has on the develop-ment of liquefaction and the system response of soil deposits.

Research papers, University of Canterbury Library

1. Background and Objectives This poster presents results from ground motion simulations of small-to-moderate magnitude (3.5≤Mw≤5.0) earthquake events in the Canterbury, New Zealand region using the Graves and Pitarka (2010,2015) methodology. Subsequent investigation of systematic ground motion effects highlights the prediction bias in the simulations which are also benchmarked against empirical ground motion models (e.g. Bradley (2013)). In this study, 144 earthquake ruptures, modelled as point sources, are considered with 1924 quality-assured ground motions recorded across 45 strong motion stations throughout the Canterbury region, as shown in Figure 1. The majority of sources are Mw≥4.0 and have centroid depth (CD) 10km or shallower. Earthquake source descriptions were obtained from the GeoNet New Zealand earthquake catalogue. The ground motion simulations were performed within a computational domain of 140km x 120km x 46km with a finite difference grid spacing of 0.1km. The low-frequency (LF) simulations utilize the 3D Canterbury Velocity Model while the high-frequency (HF) simulations utilize a generic regional 1D velocity model. In the LF simulations, a minimum shear wave velocity of 500m/s is enforced, yielding a maximum frequency of 1.0Hz.

Research papers, University of Canterbury Library

Existing unreinforced masonry (URM) buildings are often composed of traditional construction techniques, with poor connections between walls and diaphragms that results in poor performance when subjected to seismic actions. In these cases the application of the common equivalent static procedure is not applicable because it is not possible to assure “box like” behaviour of the structure. In such conditions the ultimate strength of the structure relies on the behaviour of the macro-elements that compose the deformation mechanisms of the whole structure. These macroelements are a single or combination of structural elements of the structure which are bonded one to each other. The Canterbury earthquake sequence was taken as a reference to estimate the most commonly occurring collapse mechanisms found in New Zealand URM buildings in order to define the most appropriate macroelements.

Research papers, University of Canterbury Library

Motivation This poster aims to present fragility functions for pipelines buried in liquefaction-prone soils. Existing fragility models used to quantify losses can be based on old data or use complex metrics. Addressing these issues, the proposed functions are based on the Christchurch network and soil and utilizes the Canterbury earthquake sequence (CES) data, partially represented in Figure 1. Figure 1 (a) presents the pipe failure dataset, which describes the date, location and pipe on which failures occurred. Figure 1 (b) shows the simulated ground motion intensity median of the 22nd February 2011 earthquake. To develop the model, the network and soil characteristics have also been utilized.

Research papers, University of Canterbury Library

The term resilience‘’is increasingly being used in a multitude of contexts. Seemingly the latest buzz‘’word, it can mean many things to many people, in many different situations. In a natural hazard context, the terms sustainable planning‘’, and resilience‘planning are now’being used, often interchangeably. This poster provides an overview of resilience and sustainability within a land use planning and natural hazard context, and discusses how they are interrelated in the situation of the earthquake impacted city of Christchurch, New Zealand.

Research papers, University of Canterbury Library

Research following the 2010-2011 Canterbury earthquakes investigated the minimum vertical reinforcement required in RC walls to generate well distributed cracking in the plastic hinge region. However, the influence of the loading sequence and rate has not been fully addressed. The new minimum vertical reinforcement limits in NZS 3101:2006 (Amendment 3) include consideration of the material strengths under dynamic load rates, but these provisions have not been validated at a member or system level. A series of tests were conducted on RC prisms to investigate the effect of loading rate and sequence on the local behaviour of RC members. Fifteen axially loaded RC prisms with the designs representing the end region of RC walls were tested under various loading rates to cover the range of pseudo-static and earthquake loading scenarios. These tests will provide substantial data for understanding the local behaviour of RC members, including hysteretic load-deformation behaviour, crack patterns, failure mode, steel strain, strain rate and ductility. Recommendations will be made regarding the effect of loading rate and reinforcement content on the cracking behaviour and ductility of RC members.

Research papers, University of Canterbury Library

he 2016 Building (Earthquake Prone Building) Amendment Act aims to improve the system for managing earthquake-prone buildings. The proposed changes to the Act were precipitated by the Canterbury earthquakes, and the need to improve the seismic safety of New Zealand’s building stock. However, the Act has significant ramifications for territorial authorities, organisations and individuals in small New Zealand towns, since assessing and repairing heritage buildings poses a major cost to districts with low populations and poor rental returns on commercial buildings.

Research papers, University of Canterbury Library

Background Liquefaction induced land damage has been identified in more than 13 notable New Zealand earthquakes within the past 150 years, as presented on the timeline below. Following the 2010-2011 Canterbury Earthquake Sequence (CES), the consequences of liquefaction were witnessed first-hand in the city of Christchurch and as a result the demand for understanding this phenomenon was heightened. Government, local councils, insurers and many other stakeholders are now looking to research and understand their exposure to this natural hazard.

Research papers, University of Canterbury Library

Many buildings with relatively low damage from the 2010-2011 Canterbury were deemed uneconomic to repair and were replaced [1,2]. Factors that affected commercial building owners’ decisions to replace rather than repair, included capital availability, uncertainty with regards to regional recovery, local market conditions and ability to generate cash flow, and repair delays due to limited property access (cordon). This poster provides a framework for modeling decision-making in a case where repair is feasible but replacement might offer greater economic value – a situation not currently modeled in engineering risk analysis.

Research papers, University of Canterbury Library

Semi-empirical models based on in-situ geotechnical tests have become the standard of practice for predicting soil liquefaction. Since the inception of the “simplified” cyclic-stress model in 1971, variants based on various in-situ tests have been developed, including the Cone Penetration Test (CPT). More recently, prediction models based soley on remotely-sensed data were developed. Similar to systems that provide automated content on earthquake impacts, these “geospatial” models aim to predict liquefaction for rapid response and loss estimation using readily-available data. This data includes (i) common ground-motion intensity measures (e.g., PGA), which can either be provided in near-real-time following an earthquake, or predicted for a future event; and (ii) geospatial parameters derived from digital elevation models, which are used to infer characteristics of the subsurface relevent to liquefaction. However, the predictive capabilities of geospatial and geotechnical models have not been directly compared, which could elucidate techniques for improving the geospatial models, and which would provide a baseline for measuring improvements. Accordingly, this study assesses the realtive efficacy of liquefaction models based on geospatial vs. CPT data using 9,908 case-studies from the 2010-2016 Canterbury earthquakes. While the top-performing models are CPT-based, the geospatial models perform relatively well given their simplicity and low cost. Although further research is needed (e.g., to improve upon the performance of current models), the findings of this study suggest that geospatial models have the potential to provide valuable first-order predictions of liquefaction occurence and consequence. Towards this end, performance assessments of geospatial vs. geotechnical models are ongoing for more than 20 additional global earthquakes.

Research papers, University of Canterbury Library

Unreinforced masonry churches in New Zealand, similarly to everywhere else in the word have proven to be highly vulnerable to earthquakes, because of their particular construction features. The Canterbury (New Zealand) earthquake sequence, 2010-2011 caused an invaluable loss of local architectural heritage and of churches, as regrettably, some of them were demolished instead of being repaired. It is critical for New Zealand to advance the data collection, research and understanding pertaining to the seismic performance and protection of church buildings, with the aim to:

Research papers, University of Canterbury Library

Background and methodology The Mw 7.8, 14th November 2016 earthquake centred (item b, figure 1) in the Hurunui District of the South Island, New Zealand, damaged critical infrastructure across North Canterbury and Marlborough. We investigate the impacts to infrastructure and adaptations to the resulting service disruption in four small rural towns (figure 1): Culverden (a), Waiau (c), Ward (d) and Seddon (e). This is accomplished though literary research, interviews and geospatial analysis. Illustrating our methods, we have displayed here a Hurunui District hazard map (figure 2b) and select infrastructure inventories (figures 2a, 3).

Research papers, University of Canterbury Library

We present initial results from a set of three-dimensional (3D) deterministic earthquake ground motion simulations for the northern Canterbury plains, Christchurch and the Banks Peninsula region, which explicitly incorporate the effects of the surface topography. The simu-lations are done using Hercules, an octree-based finite-element parallel software for solving 3D seismic wave propagation problems in heterogeneous media under kinematic faulting. We describe the efforts undertaken to couple Hercules with the South Island Velocity Model (SIVM), which included changes to the SIVM code in order to allow for single repetitive que-ries and thus achieve a seamless finite-element meshing process within the end-to-end ap-proach adopted in Hercules. We present our selection of the region of interest, which corre-sponds to an area of about 120 km × 120 km, with the 3D model reaching a depth of 60 km. Initial simulation parameters are set for relatively high minimum shear wave velocity and a low maximum frequency, which we are progressively scaling up as computing resources permit. While the effects of topography are typically more important at higher frequencies and low seismic velocities, even at this initial stage of our efforts (with a maximum of 2 Hz and a mini-mum of 500 m/s), it is possible to observe the importance of the topography in the response of some key locations within our model. To highlight these effects we compare the results of the 3D topographic model with respect to those of a flat (squashed) 3D model. We draw rele-vant conclusions from the study of topographic effects during earthquakes for this region and describe our plans for future work.

Research papers, University of Canterbury Library

Damage distribution maps from strong earthquakes and recorded data from field experiments have repeatedly shown that the ground surface topography and subsurface stratigraphy play a decisive role in shaping the ground motion characteristics at a site. Published theoretical studies qualitatively agree with observations from past seismic events and experiments; quantitatively, however, they systematically underestimate the absolute level of topographic amplification up to an order of magnitude or more in some cases. We have hypothesized in previous work that this discrepancy stems from idealizations of the geometry, material properties, and incident motion characteristics that most theoretical studies make. In this study, we perform numerical simulations of seismic wave propagation in heterogeneous media with arbitrary ground surface geometry, and compare results with high quality field recordings from a site with strong surface topography. Our goal is to explore whether high-fidelity simulations and realistic numerical models can – contrary to theoretical models – capture quantitatively the frequency and amplitude characteristics of topographic effects. For validation, we use field data from a linear array of nine portable seismometers that we deployed on Mount Pleasant and Heathcote Valley, Christchurch, New Zealand, and we compute empirical standard spectral ratios (SSR) and single-station horizontal-to-vertical spectral ratios (HVSR). The instruments recorded ambient vibrations and remote earthquakes for a period of two months (March-April 2017). We next perform two-dimensional wave propagation simulations using the explicit finite difference code FLAC. We construct our numerical model using a high-resolution (8m) Digital Elevation Map (DEM) available for the site, an estimated subsurface stratigraphy consistent with the geomorphology of the site, and soil properties estimated from in-situ and non-destructive tests. We subject the model to in-plane and out-of-plane incident motions that span a broadband frequency range (0.1-20Hz). Numerical and empirical spectral ratios from our blind prediction are found in very good quantitative agreement for stations on the slope of Mount Pleasant and on the surface of Heathcote Valley, across a wide range of frequencies that reveal the role of topography, soil amplification and basin edge focusing on the distribution of ground surface motion.