Search

found 115 results

Research papers, Lincoln University

Earthquakes rupture not only the objective realm of the physical landscape, but also the subjective landscape of emotions. Using the concepts of topophilia and topophobia developed by Yi-Fu Tuan as theories of love and fear of place, this paper investigates the impact of Christchurch’s earthquakes of 2010 and 2011 on relationships with the city’s landscape. Published accounts of the earthquakes in newspapers from around New Zealand are examined for evidence of how people responded to the situation, in particular their shifting relationship with familiar landscapes. The reports illustrate how residents and visitors reacted to the actual and perceived changes to their surroundings, grappling with how a familiar place had become alien and often startling. The extreme nature of the event and the death toll of 185 heightened perceptions of the landscape, and even the most taken-for-granted elements of the landscape became amplified in significance. Enhanced understanding of the landscape of emotions is a vital component of wellbeing. Through recognising that the impact of disasters and perceived threats to familiar places has a profound emotional effect, the significance of sense of place to wellbeing can be appreciated.

Research papers, Lincoln University

The earthquake swarm that has struck Canterbury, New Zealand from September 2010 has led to widespread destruction and loss of life in the city of Christchurch. In response to this the New Zealand government convened a Royal Commission under the Commissions of Inquiry Act 1908. The terms of reference for this enquiry were wide ranging, and included inquiry into legal and best-practice requirements for earthquake-prone buildings and associated risk management strategies. The Commission produced a final report on earthquake-prone buildings and recommendations which was made public on the 7th December 2012. Also on the 7th of December 2012 the Ministry of Business, Innovation and Employment (MBIE) released a Consultation Document that includes many of the recommendations put forward by the Royal Commission. This paper examines the evidence presented to the Royal Commission and reviews their recommendations and those of MBIE in relation to the management of earthquake-prone buildings. An analysis of the likely impacts of the recommendations and proposals on both the property market and society in general is also undertaken.

Research papers, Lincoln University

The city of Ōtautahi/Christchurch experienced a series of earthquakes that began on September 4th, 2010. The most damaging event occurred on February 22nd, 2011 but significant earthquakes also occurred on June 13th and December 23rd with aftershocks still occurring well into 2012. The resulting disaster is the second deadliest natural disaster in New Zealand’s history with 185 deaths. During 2011 the Canterbury earthquakes were one of the costliest disasters worldwide with an expected cost of up to $NZ30 billion. Hundreds of commercial buildings and thousands of houses have been destroyed or are to be demolished and extensive repairs are needed for infrastructure to over 100,000 homes. As many as 8,900 people simply abandoned their homes and left the city in the first few months after the February event (Newell, 2012), and as many as 50,000 may leave during 2012. In particular, young whānau and single young women comprised a disproportionate number of these migrants, with evidence of a general movement to the North Island. Te Puni Kōkiri sought a mix of quantitative and qualitative research to examine the social and economic impacts of the Christchurch earthquakes on Māori and their whānau. The result of this work will be a collection of evidence to inform policy to support and assist Māori and their whānau during the recovery/rebuild phases. To that end, this report triangulates available statistical and geographical information with qualitative data gathered over 2010 and 2011 by a series of interviews conducted with Māori who experienced the dramatic events associated with the earthquakes. A Māori research team at Lincoln University was commissioned to undertake the research as they were already engaged in transdisciplinary research (began in the May 2010), that focused on quickly gathering data from a range of Māori who experienced the disaster, including relevant economic, environmental, social and cultural factors in the response and recovery of Māori to these events. Participants for the qualitative research were drawn from Māori whānau who both stayed and left the city. Further data was available from ongoing projects and networks that the Lincoln research team was already involved in, including interviews with Māori first responders and managers operating in the CBD on the day of the February event. Some limited data is also available from younger members of affected whānau. Māori in Ōtautahi/Christchurch City have exhibited their own culturally-attuned collective responses to the disaster. However, it is difficult to ascertain Māori demographic changes due to a lack of robust statistical frameworks but Māori outward migration from the city is estimated to range between 560 and 1,100 people. The mobility displayed by Māori demonstrates an important but unquantified response by whānau to this disaster, with emigration to Australia presenting an attractive option for young Māori, an entrenched phenomenon that correlates to cyclical downturns and the long-term decline of the New Zealand economy. It is estimated that at least 315 Māori have emigrated from the Canterbury region to Australia post-quake, although the disaster itself may be only one of a series of events that has prompted such a decision. Māori children made up more than one in four of the net loss of children aged 6 to 15 years enrolled in schools in Greater Christchurch over the year to June 2011. Research literature identifies depression affecting a small but significant number of children one to two years post-disaster and points to increasing clinical and organisational demands for Māori and other residents of the city. For those residents in the eastern or coastal suburbs – home to many of the city’s Māori population - severe damage to housing, schools, shops, infrastructure, and streets has meant disruption to their lives, children’s schooling, employment, and community functioning. Ongoing abandonment of homes by many has meant a growing sense of unease and loss of security, exacerbated by arson, burglaries, increased drinking, a stalled local and national economy, and general confusion about the city’s future. Māori cultural resilience has enabled a considerable network of people, institutions, and resources being available to Māori , most noticeably through marae and their integral roles of housing, as a coordinating hub, and their arguing for the wider affected communities of Christchurch. Relevant disaster responses need to be discussed within whānau, kōhanga, kura, businesses, communities, and wider neighbourhoods. Comprehensive disaster management plans need to be drafted for all iwi in collaboration with central government, regional, and city or town councils. Overall, Māori are remarkably philosophical about the effects of the disaster, with many proudly relishing their roles in what is clearly a historic event of great significance to the city and country. Most believe that ‘being Māori’ has helped cope with the disaster, although for some this draws on a collective history of poverty and marginalisation, features that contribute to the vulnerability of Māori to such events. While the recovery and rebuild phases offer considerable options for Māori and iwi, with Ngāi Tahu set to play an important stakeholder in infrastructural, residential, and commercial developments, some risk and considerable unknowns are evident. Considerable numbers of Māori may migrate into the Canterbury region for employment in the rebuild, and trades training strategies have already been established. With many iwi now increasingly investing in property, the risks from significant earthquakes are now more transparent, not least to insurers and the reinsurance sector. Iwi authorities need to be appraised of insurance issues and ensure sufficient coverage exists and investments and developments are undertaken with a clear understanding of the risks from natural hazards and exposure to future disasters.

Research papers, The University of Auckland Library

Unreinforced masonry (URM) is a construction type that was commonly adopted in New Zealand between the 1880s and 1930s. URM construction is evidently vulnerable to high magnitude earthquakes, with the most recent New Zealand example being the 22 February 2011 Mw6.3 Christchurch earthquake. This earthquake caused significant damage to a majority of URM buildings in the Canterbury area and resulted in 185 fatalities. Many URM buildings still exist in various parts of New Zealand today, and due to their likely poor seismic performance, earthquake assessment and retrofit of the remaining URM building stock is necessary as these buildings have significant architectural heritage and occupy a significant proportion of the nation’s building stock. A collaborative research programme between the University of Auckland and Reid Construction Systems was conducted to investigate an economical yet effective solution for retrofitting New Zealand’s existing URM building stock. This solution adopts the shotcrete technique using an Engineered Cementitious Composite (ECC), which is a polyvinyl alcohol fibre reinforced mortar that exhibits strain hardening characteristics. Collaborations have been formed with a number of consulting structural engineers throughout New Zealand to develop innovative and cost effective retrofit solutions for a number of buildings. Two such case studies are presented in this paper. http://www.concrete2013.com.au/technical-program/

Research papers, The University of Auckland Library

As a result of the 4 September 2010 Darfield earthquake and the more damaging 22 February 2011 Christchurch earthquake, considerable damage occurred to a significant number of buildings in Christchurch. The damage that occurred to the Christchurch Roman Catholic Cathedral of the Blessed Sacrament (commonly known as the Christchurch Basilica) as a result of the Canterbury earthquakes is reported, and the observed failure modes are identified. A previous strengthening intervention is outlined and the estimated capacity of the building is discussed. This strengthening was completed in 2004, and addressed the worst aspects of the building's seismic vulnerability. Urgent work was undertaken post-earthquake to secure parts of the building in order to limit damage and prevent collapse of unstable parts of the building. The approach taken for this securing is outlined, and the performance of the building and the previously installed earthquake strengthening intervention is evaluated.A key consideration throughout the project was the interaction between the structural securing requirements that were driven by the requirement to limit damage and mitigate hazards, and the heritage considerations. Lessons learnt from the strengthening that was carried out, the securing work undertaken, and the approach taken in making the building "safe" are discussed. Some conclusions are drawn with respect to the effectiveness of strengthening similar building types, and the approach taken to secure the building under active seismic conditions. AM - Accepted Manuscript

Research papers, University of Canterbury Library

Two projects are documented within this MEM Report: I. The first project examined what was learnt involving the critical infrastructure in the aftermath of natural disasters in the Canterbury region of New Zealand – the most prominent being the series of earthquakes between 2010 and 2011. The project identified several learning gaps, leading to recommendations for further investigations that could add significant value for the lifeline infrastructure community. II. Following the Lifeline Lesson Learnt Project, the Disaster Mitigation Guideline series was initiated with two booklets, one on Emergency Potable Water and a second on Emergency Sanitation. The key message from both projects is that we can and must learn from disasters. The projects described are part of the emergency management, and critical infrastructure learning cycles – presenting knowledge captured by others in a digestible format, enabling the lessons to be reapplied. Without these kinds of projects, there will be fewer opportunities to learn from other’s successes and failures when it comes to preparing for natural disasters.

Research papers, University of Canterbury Library

This study sought to investigate employee burnout within a post-disaster context by exploring teachers’ burnout perceptions and workplace attitudes in the aftermath of the 2010-2011 Christchurch earthquakes. The study hypothesised that burnout dimensions (emotional exhaustion and cynicism) would be related with the extent to which individuals and schools were impacted by the earthquakes, and with the quality of school support for staff and students (i.e., personal disaster impact, school disaster impact and school responsiveness to the disaster), with perceptions of role conflict and role overload, and with turnover intentions. Additionally, a Teacher Burnout Model was proposed whereby emotional exhaustion and cynicism were hypothesised to mediate the relationships between the independent variables (i.e., the disaster-related and role-related variables) and turnover intentions. 125 primary, intermediate and secondary school teachers from the city of Christchurch completed an online survey. Results revealed that high role overload, high role conflict, high school disaster impact, and schools’ ineffective disaster coping responses, were associated with increased levels of emotional exhaustion and cynicism. Although greater impact of earthquakes on teachers’ personal lives was related to higher levels of emotional exhaustion, results revealed a non-significant relationship between personal disaster impact and cynicism. In the Teacher Burnout Model, the relationships between both role stress variables and turnover intentions were mediated by perceptions of emotional exhaustion. This study contributes novel findings to the burnout literature, and provides implications for schools and organisations operating within a disaster context.

Research papers, University of Canterbury Library

Disasters are rare events with major consequences; yet comparatively little is known about managing employee needs in disaster situations. Based on case studies of four organisations following the devastating earthquakes of 2010 - 2011 in Christchurch, New Zealand, this paper presents a framework using redefined notions of employee needs and expectations, and charting the ways in which these influence organisational recovery and performance. Analysis of in-depth interview data from 47 respondents in four organisations highlighted the evolving nature of employee needs and the crucial role of middle management leadership in mitigating the effects of disasters. The findings have counterintuitive implications for human resource functions in a disaster, suggesting that organisational justice forms a central framework for managing organisational responses to support and engage employees for promoting business recovery.

Research papers, University of Canterbury Library

During 2010 and 2011, major earthquakes caused widespread damage and the deaths of 185 people in the city of Christchurch. Damaged school buildings resulted in state intervention which required amendment of the Education Act of 1989, and the development of ‘site sharing agreements’ in undamaged schools to cater for the needs of students whose schools had closed. An effective plan was also developed for student assessment through establishing an earthquake impaired derived grade process. Previous research into traditional explanations of educational inequalities in the United Kingdom, the United States of America, and New Zealand were reviewed through various processes within three educational inputs: the student, the school and the state. Research into the impacts of urban natural disasters on education and education inequalities found literature on post disaster education systems but nothing could be found that included performance data. The impacts of the Canterbury earthquakes on educational inequalities and achievement were analysed over 2009-2012. The baseline year was 2009, the year before the first earthquake, while 2012 is seen as the recovery year as no schools closed due to seismic events and there was no state intervention into the education of the region. National Certificate of Educational Achievement (NCEA) results levels 1-3 from thirty-four secondary schools in the greater Christchurch region were graphed and analysed. Regression analysis indicates; in 2009, educational inequalities existed with a strong positive relationship between a school’s decile rating and NCEA achievement. When schools were grouped into decile rankings (1-10) and their 2010 NCEA levels 1-3 results were compared with the previous year, the percentage of change indicates an overall lower NCEA achievement in 2010 across all deciles, but particularly in lower decile schools. By contrast, when 2011 NCEA results were compared with those of 2009, as a percentage of change, lower decile schools fared better. Non site sharing schools also achieved higher results than site sharing schools. State interventions, had however contributed towards student’s achieving national examinations and entry to university in 2011. When NCEA results for 2012 were compared to 2009 educational inequalities still exist, however in 2012 the positive relationship between decile rating and achievement is marginally weaker than in 2009. Human ethics approval was required to survey one Christchurch secondary school community of students (aged between 12 and 18), teachers and staff, parents and caregivers during October 2011. Participation was voluntary and without incentives, 154 completed questionnaires were received. The Canterbury earthquakes and aftershocks changed the lives of the research participants. This school community was displaced to another school due to the Christchurch earthquake on 22 February 2011. Research results are grouped under four geographical perspectives; spatial impacts, socio-economic impacts, displacement, and health and wellbeing. Further research possibilities include researching the lag effects from the Canterbury earthquakes on school age children.

Research papers, University of Canterbury Library

The aim of this thesis was to examine the spatial and the temporal patterns of anxiety and chest pain resulting from the Canterbury, New Zealand earthquaeks. Three research objectives were identified: examine any spatial or termporal clusters of anxiety and chest pain; examine the associations between anxiety, chest pain and damage to neighbourhood; and determine any statistically significant difference in counts of anxiety and chest pain after each earthquake or aftershock which resulted in severe damage. Measures of the extent of liquefaction the location of CERA red-zones were used as proxy measures for earthquake damage. Cases of those who presented to Christchurch Public Hospital Emergency Department with either anxiety or chest pain between May 2010 and April 2012 were aggregated to census area unit (CAU) level for analysis. This thesis has taken a unique approach to examining the spatial and spatio-temporal variations of anxiety and chest pain after an earthquake and offers unique results. This is the first study of its kind to use a GIS approach when examining Canterbury specific earthquake damage and health variables at a CAU level after the earthquakes. Through the use of spatio-termporal scan modelling, negative and linear regression modelling and temporal linear modelling with dummy variables this research was able to conclude there are significant spatial and temporal variations in anxiety and chest pain resulting from the earthquakes. The spatio-termporal scan modelling identified a hot cluster of both anxiety and chest pain within Christchurch at the same time the earthquakes occurred. The negative binomial model found liquefaction to be a stronger predictor of anxiety than the Canterbury Earthquake Recovery Authority's (CERA) land zones. The linear regression model foun chest pain to be positively associated with all measures of earthquake damage with the exception of being in the red-zone. The temporal modelling identified a significant increase in anxiety cases one month after a major earthquake, and chest pain cases spiked two weeks after an earthquake and gradually decreased over the following five weeks. This research was limited by lack of control period data, limited measures of earthquake damage, ethical restrictions, and the need for population tracking data. The findings of this research will be useful in the planning and allocation of mental wellbeing resources should another similar event like the Canterbury Earthquakes occur in New Zealand.

Research papers, University of Canterbury Library

Fatal earthquakes such as that which occurred in Christchurch on February 22nd 2011, can result in survivors having difficulties with cognitively processing the event, which may be the precursor to posttraumatic stress symptoms. Trauma related dissociation has been proposed to be a mechanism related to these cognitive processing difficulties. Most research focusing on information processing and dissociation post-trauma has conducted controlled analogue studies or has not focused solely on information processing and dissociation. There is also scant research on these constructs across therapy. In response to this gap in research, two studies were developed. An association was proposed between dissociation and information processing as demonstrated by an increase in conceptual processing and a reduction in dissociation. It was predicted that an improvement in these constructs would be related to a reduction in PTSD symptoms over therapy. Study1 applied a case-study design to 5 individuals who were attending therapy for post-traumatic stress disorder in response to the trauma they had experienced from the Christchurch earthquakes. Study 2 assessed information processing and dissociation (via self and observer report) in 20 individuals who had direct exposure to the effects of the earthquake. Earthquake information processing and dissociation were assessed as they were happening nearly two year’s post-quake using correlation analyses and hierarchical regressions. The hypotheses were partially confirmed, in that an increase in conceptual processing was not shown to be associated with a reduction in dissociation. However, an increase in conceptual processing was shown to be related to trauma symptom improvement particularly for re-experiencing symptoms. In addition, study 2 demonstrated a possible relationship between trait dissociation and arousal symptoms. These findings partially support the proposed role information processing and dissociation play in the recovery from PTSD. The findings suggest that trauma related difficulties should be assessed as early as possible to resolve issues related to a delay in symptom reporting.

Research papers, University of Canterbury Library

Christchurch earthquake events have raised questions on the adequacy of performance-based provisions in the current national building code. At present, in the building code the performance objectives are expressed in terms of safety and health criteria that could affect building occupants. In general, under the high intensity Christchurch events, buildings performed well in terms of life-safety (with a few exceptions) and it proved that the design practices adopted for those buildings could meet the performance objectives set by the building code. However, the damage incurred in those buildings resulted in unacceptably high economic loss. It is timely and necessary to revisit the objectives towards building performance in the building code and to include provisions for reducing economic implications in addition to the current requirements. Based on the observed performance of some buildings, a few specific issues in the current design practices that could have contributed to extensive damage have been identified and recommended for further research leading towards improved performance of structures. In particular, efforts towards innovative design/construction solutions with low-damage concepts are encouraged. New Zealand has been one of the leading countries in developing many innovative technologies. However, such technically advanced research findings usually face challenges towards implementation. Some of the reasons include: (i) lack of policy requirements; (iii) absence of demonstrated performance of new innovations to convince stakeholders; and (iv) non-existence of design guidelines. Such barriers significantly affect implementation of low damage construction and possible strategies to overcome those issues are discussed in this paper.

Research papers, University of Canterbury Library

This paper presents a critical evaluation of vertical ground motions observed in the Canterbury earthquake sequence. The abundance of strong near-source ground-motion recordings provides an opportunity to comprehensively review the estimation of vertical ground motions via the New Zealand Standard for earthquake loading, NZS1170.5:2004, and empirical ground motion prediction equations (GMPEs). An in-depth review of current GMPEs is carried out to determine the existing trends and characteristics present in the empirical models. Results illustrate that vertical ground motion amplitudes estimated based on NZS1170.5:2004 are significantly unconservative at short periods and near-source distances. While conventional GMPEs provide an improved prediction, in many instances they too underpredict vertical ground motion accelerations at short periods and near-source distances.

Research papers, University of Canterbury Library

In this paper, the characteristics of near-fault ground motions recorded during the Mw7.1 Darfield and Mw 6.2 Christchurch earthquakes are examined and compared with existing empirical models. The characteristics of forward-directivity effects are first examined using a wavelet-based pulse-classification algorithm. This is followed by an assessment of the adequacy of empirical models which aim to capture the effect of directivity effects on amplifying the acceleration response spectra; and the period and peak velocity of the forward-directivity pulse. It is illustrated that broadband directivity models developed by Somerville et al. (1997) and Abrahamson (2000) generally under-predict the observed amplification of response spectral ordinates at longer vibration periods. In contrast, a recently developed narrowband model by Shahi and Baker (2011) provides significantly improved predictions by amplifying the response spectra within a small range of periods surrounding the directivity pulse period. Although the empirical predictions of the pulse period are generally favourable for the Christchurch earthquake, the observations from the Darfield earthquake are significantly under-predicted. The elongation in observed pulse periods is inferred as being a result of the soft sedimentary soils of the Canterbury basin. However, empirical predictions of the observed peak velocity associated with the directivity pulse are generally adequate for both events.

Research papers, University of Canterbury Library

Damage to ceiling systems resulted in a substantial financial loss to building owners in the Canterbury earthquakes. In some buildings, collapse of ceilings could easily have resulted in severe injury to occupants. This paper summarizes the types of ceiling damage observed in the Canterbury earthquakes, and draws useful lessons from the observed performance of different types of ceiling systems. Existing ceiling manufacturing and installing practices/regulations in New Zealand are critically scrutinized to identify deficiencies, and measures are suggested to improve the practice so that the damage to ceilings and the resulting loss are minimized in future earthquakes.

Research papers, University of Canterbury Library

The capability of self-compacting concrete (SCC) in flowing through and filling in even the most congested areas makes it ideal for being used in congested reinforced concrete (RC) structural members such as beam-column joints (BCJ). However, members of tall multi-storey structures impose high capacity requirements where implementing normal-strength self-compacting concrete is not preferable. In the present study, a commercially reproducible high-strength self-compacting concrete (HSSCC), a conventionally vibrated high-strength concrete (CVHSC) and a normal strength conventionally vibrated concrete (CVC) were designed using locally available materials in Christchurch, New Zealand. Following the guidelines of the New Zealand concrete standards NZS3101, seven beam-column joints (BCJ) were designed. Factors such as the concrete type, grade of reinforcement, amount of joint shear stirrups, axial load, and direction of casting were considered variables. All BCJs were tested under a displacement-controlled quasi-static reversed cyclic regime. The cracking pattern at different load levels and the mode of failure were also recorded. In addition, the load, displacement, drift, ductility, joint shear deformations, and elongation of the plastic hinge zone were also measured during the experiment. It was found that not only none of the seismically important features were compromised by using HSSCC, but also the quality of material and ease of construction boosted the performance of the BCJs.

Research papers, University of Canterbury Library

Cultural heritage is a dynamic concept, incorporating the ideas and values of many different organisations and individuals; it is heavily dependent on the context of the item or site being conserved, and transforms something from an old article into a historically significant object. A formal definition of cultural heritage did not appear in the Antarctic Treaty System until 1995, however Antarctic heritage value has been applied to various sites and monuments since the inception of the Treaty, from Shackleton’s Nimrod Hut to a heavy tractor. This report examines a number of case studies to determine the various ways in which heritage items and sites can be managed – such as the removal of the South Pole Dome – as well as their conservation after natural disasters, for instance the Christchurch earthquakes.

Research papers, University of Canterbury Library

Deconstruction, at the end of the useful life of a building, produces a considerable amount of materials which must be disposed of, or be recycled / reused. At present, in New Zealand, most timber construction and demolition (C&D) material, particularly treated timber, is simply waste and is placed in landfills. For both technical and economic reasons (and despite the increasing cost of landfills), this position is unlikely to change in the next 10 – 15 years unless legislation dictates otherwise. Careful deconstruction, as opposed to demolition, can provide some timber materials which can be immediately re-used (eg. doors and windows), or further processed into other components (eg. beams or walls) or recycled (‘cascaded’) into other timber or composite products (e.g. fibre-board). This reusing / recycling of materials is being driven slowly in NZ by legislation, the ‘greening’ of the construction industry and public pressure. However, the recovery of useful material can be expensive and uneconomic (as opposed to land-filling). In NZ, there are few facilities which are able to sort and separate timber materials from other waste, although the soon-to-be commissioned Burwood Resource Recovery Park in Christchurch will attempt to deal with significant quantities of demolition waste from the recent earthquakes. The success (or otherwise) of this operation should provide good information as to how future C&D waste will be managed in NZ. In NZ, there are only a few, small scale facilities which are able to burn waste wood for energy recovery (e.g. timber mills), and none are known to be able to handle large quantities of treated timber. Such facilities, with constantly improving technology, are being commissioned in Europe (often with Government subsidies) and this indicates that similar bio-energy (co)generation will be established in NZ in the future. However, at present, the NZ Government provides little assistance to the bio-energy industry and the emergence worldwide of shale-gas reserves is likely to push the economic viability of bio-energy further into the future. The behaviour of timber materials placed in landfills is complex and poorly understood. Degrading timber in landfills has the potential to generate methane, a potent greenhouse gas, which can escape to the atmosphere and cancel out the significant benefits of carbon sequestration during tree growth. Improving security of landfills and more effective and efficient collection and utilisation of methane from landfills in NZ will significantly reduce the potential for leakage of methane to the atmosphere, acting as an offset to the continuing use of underground fossil fuels. Life cycle assessment (LCA), an increasingly important methodology for quantifying the environmental impacts of building materials (particularly energy, and global warming potential (GWP)), will soon be incorporated into the NZ Green Building Council Greenstar rating tools. Such LCA studies must provide a level playing field for all building materials and consider the whole life cycle. Whilst the end-of-life treatment of timber by LCA may establish a present-day base scenario, any analysis must also present a realistic end-of-life scenario for the future deconstruction of any 6 new building, as any building built today will be deconstructed many years in the future, when very different technologies will be available to deal with construction waste. At present, LCA practitioners in NZ and Australia place much value on a single research document on the degradation of timber in landfills (Ximenes et al., 2008). This leads to an end-of-life base scenario for timber which many in the industry consider to be an overestimation of the potential negative effects of methane generation. In Europe, the base scenario for wood disposal is cascading timber products and then burning for energy recovery, which normally significantly reduces any negative effects of the end-of-life for timber. LCA studies in NZ should always provide a sensitivity analysis for the end-of-life of timber and strongly and confidently argue that alternative future scenarios are realistic disposal options for buildings deconstructed in the future. Data-sets for environmental impacts (such as GWP) of building materials in NZ are limited and based on few research studies. The compilation of comprehensive data-sets with country-specific information for all building materials is considered a priority, preferably accounting for end-of-life options. The NZ timber industry should continue to ‘champion’ the environmental credentials of timber, over and above those of the other major building materials (concrete and steel). End-of-life should not be considered the ‘Achilles heel’ of the timber story.

Research papers, University of Canterbury Library

The Avon-Heathcote Estuary is of significant value to Christchurch due to its high productivity, biotic diversity, proximity to the city, and its cultural, recreational and aesthetic qualities. Nonetheless, it has been subjected to decades of degradation from sewage wastewater discharges and encroaching urban development. The result was a eutrophied estuary, high in nitrogen, affected by large blooms of nuisance macroalgae and covered by degraded sediments. In March 2010, treated wastewater was diverted from the estuary to a site 3 km offshore. This quickly reduced water nitrogen by 90% within the estuary and, within months, there was reduced production of macroalgae. However, a series of earthquakes beginning in September 2010 brought massive changes: tilting of the estuary, changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sediment and nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are an important buffer against eutrophication. Therefore, in tandem with the wastewater diversion, they could underpin much of the recovery of the estuary. Overall, the new sediments were less favourable for benthic microalgal growth and recolonisation, but were less contaminated than old sediments at highly eutrophic sites. Because the new sediments were less contaminated than the old sediments, they could help return the estuary to a noneutrophic state. However, if the new sediments, which are less favourable for microalgal growth, disperse over the old sediments at highly eutrophic sites, they could become contaminated and interfere with estuarine recovery. Therefore, recovery of microalgal communities and the estuary was expected to be generally long, but variable and site-specific, with the least eutrophic sites recovering quickly, and the most eutrophic sites taking years to return to a pre-earthquake and non-eutrophied state. changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sedimen tand nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are

Research papers, University of Canterbury Library

This report examines and compares case studies of labour market policy responses in APEC economies to natural disasters. It first reviews the policies and practice within APEC economies and internationally in managing the labour market effects of natural disasters. By using comparative case studies, the report then compares recent disaster events in the Asia-Pacific region, including: - the June 2013 Southern Alberta floods in Canada; - the 2010 and 2011 Queensland floods in Australia; - the 2010 and 2011 Canterbury earthquakes in New Zealand; - the 2011 Great East Japan Earthquake and Tsunami in Japan; and - the 2008 Wenchuan earthquake in China.

Research papers, University of Canterbury Library

Insurance is widely acknowledged as a key component in an organisation's disaster preparedness and resilience. But how effective is insurance in aiding business recovery following a major disaster? The aim of this research was to summarise the experiences of both the insurance industry and businesses dealing with commercial insurance claims following the 2010 and 2011 Canterbury earthquakes.

Research papers, University of Canterbury Library

The Canterbury earthquakes have generated economic demand and supply volatility, highlighting geographical and structural interdependencies. Post-earthquake reconstruction and new developments have seen skills training, relocation, recruitment and importation of skills becoming crucial for construction companies to meet demand and compete effectively. This report presents 15 case studies from a range of organisations involved in the Canterbury rebuild, exploring the business dynamics and outcomes of their resourcing initiatives. A key finding of this research is that, for many construction organisations, resourcing initiatives have become part of their organisational longer-term development strategies, rather than simply a response to ‘supply and demand’ pressures. Organisations are not relying on any single resourcing solution to drive their growth but use a combination of initiatives to create lasting business benefits, such as cost savings, improved brand and reputation, a stable and productive workforce, enhanced efficiency and staff morale, as well as improved skill levels.

Research papers, University of Canterbury Library

Novel Gel-push sampling was employed to obtain high quality samples of Christchurch sands from the Central Business District, at sites where liquefaction was observed in 22 February 2011, and 13 June 2011 earthquakes. The results of cyclic triaxial testing on selected undisturbed specimens of typical Christchurch sands are presented and compared to empirical procedures used by practitioners. This comparison suggests cyclic triaxial data may be conservative, and the Magnitude Scaling Factor used in empirical procedures may be unconservative for highly compressible soils during near source moderate to low magnitude events. Comparison to empirical triggering curves suggests the empirical method generally estimates the cyclic strength of Christchurch sands within a reasonable degree of accuracy as a screening evaluation tool for liquefaction hazard, however for sands with moderate to high fines content it may be significantly unconservative, highlighting the need for high quality sampling and testing on important projects where seismic performance is critical.

Research papers, University of Canterbury Library

This research examines a surprising partner in emergency management - a local community time bank. Specifically, we explain the role of the Lyttelton Time Bank in promoting community resiliency following the Canterbury earthquakes in 2010 and 2011. A time bank is a grassroots exchange system in which members trade services non-reciprocally. This exchange model assumes that everyone has tradable skills and all labour is equal in value. One hour of any labour earns a member one time bank hour, which can be used to purchase another member’s services. Before the earthquakes struck, the Lyttelton Time Bank (TB) had organised over 10% of the town’s residents and 18 local organisations. It was documenting, developing, and mobilising skills to solve individual and collective problems. This report examines the Lyttelton Time Bank and its’ role before, during, and after the earthquakes based on the analysis of over three and a half years of fieldwork, observations, interviews, focus groups, trading activity, and secondary data.

Research papers, University of Canterbury Library

The Canterbury region of New Zealand experienced four earthquakes greater than MW 6.0 between September 2010 and December 2011. This study employs system dynamics as well as hazard, recovery and organisational literature and brings together data collected via surveys, case studies and interviews with organisations affected by the earthquakes. This is to show how systemic interactions and interdependencies within and between industry and geographic sectors affect their recovery post-disaster. The industry sectors in the study are: construction for its role in the rebuild, information and communication technology which is a regional high-growth industry, trucking for logistics, critical infrastructure, fast moving consumer goods (e.g. supermarkets) and hospitality to track recovery through non-discretionary and discretionary spend respectively. Also in the study are three urban centres including the region’s largest Central Business District, which has been inaccessible since the earthquake of 22 February 2011 to the time of writing in February 2013. This work also highlights how earthquake effects propagated between sectors and how sectors collaborated to mitigate difficulties such as product demand instability. Other interacting factors are identified that influence the recovery trajectories of the different industry sectors. These are resource availability, insurance payments, aid from central government, and timely and quality recovery information. This work demonstrates that in recovering from disaster it is crucial for organisations to identify what interacting factors could affect their operations. Also of importance are efforts to reduce the organisation’s vulnerability and increase their resilience to future crises and in day-to-day operations. Lastly, the multi-disciplinary approach to understanding the recovery and resilience of organisations and industry sectors after disaster, leads to a better understanding of effects as well as more effective recovery policy.

Research papers, University of Canterbury Library

Fine grained sediment deposition in urban environments during natural hazard events can impact critical infrastructure and properties (urban terrain) leading to reduced social and economic function and potentially adverse public health effects. Therefore, clean-up of the sediments is required to minimise impacts and restore social and economic functionality as soon as possible. The strategies employed to manage and coordinate the clean-up significantly influence the speed, cost and quality of the clean-up operation. Additionally, the physical properties of the fine grained sediment affects the clean-up, transport, storage and future usage of the sediment. The goals of the research are to assess the resources, time and cost required for fine grained sediment clean-up in an urban environment following a disaster and to determine how the geotechnical properties of sediment will affect urban clean-up strategies. The thesis focuses on the impact of fine grained sediment (<1 mm) deposition from three liquefaction events during the Canterbury earthquake sequence (2010-2011) on residential suburbs and transport networks in Christchurch. It also presents how geotechnical properties of the material may affect clean-up strategies and methods by presenting geotechnical analysis of tephra material from the North Island of New Zealand. Finally, lessons for disaster response planning and decision making for clean-up of sediment in urban environments are presented. A series of semi-structured interviews of key stakeholders supported by relevant academic literature and media reports were used to record the clean-up operation coordination and management and to make a preliminary qualification of the Christchurch liquefaction ejecta clean-up (costs breakdown, time, volume, resources, coordination, planning and priorities). Further analysis of the costs and resources involved for better accuracy was required and so the analysis of Christchurch City Council road management database (RAMM) was done. In order to make a transition from general fine sediment clean-up to specific types of fine disaster sediment clean-up, adequate information about the material properties is required as they will define how the material will be handled, transported and stored. Laboratory analysis of young volcanic tephra from the New Zealand’s North Island was performed to identify their geotechnical properties (density, granulometry, plasticity, composition and angle of repose). The major findings of this research were that emergency planning and the use of the coordinated incident management system (CIMS) system during the emergency were important to facilitate rapid clean-up tasking, management of resources and ultimately recovery from widespread and voluminous liquefaction ejecta deposition in eastern Christchurch. A total estimated cost of approximately $NZ 40 million was calculated for the Christchurch City clean-up following the 2010-2011 Canterbury earthquake sequence with a partial cost of $NZ 12 million for the Southern part of the city, where up to 33% (418 km) of the road network was impacted by liquefaction ejecta and required clearing of the material following the 22 February 2011 earthquake. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill for all three liquefaction inducing earthquake events. The average cost per kilometre for the event clean-up was $NZ 5,500/km (4 September 2010), $NZ 11,650/km (22 February 2011) and $NZ 11,185/km (13 June 2011). The duration of clean-up time of residential properties and the road network was approximately two to three months for each of the three liquefaction ejecta events; despite events volumes and spatial distribution of ejecta. Interviews and quantitative analysis of RAMM data revealed that the experience and knowledge gained from the Darfield earthquake (4 September 2010) clean-up increased the efficiency of the following Christchurch earthquake induced liquefaction ejecta clean-up events. Density, particle size, particle shape, clay content and moisture content, are the important geotechnical properties that need to be considered when planning for a clean-up method that incorporates collection, transport and disposal or storage. The geotechnical properties for the tephra samples were analysed to increase preparedness and reaction response of potentially affected North Island cities from possible product from the active volcanoes in their region. The geotechnical results from this study show that volcanic tephra could be used in road or construction material but the properties would have to be further investigated for a New Zealand context. Using fresh volcanic material in road, building or flood control construction requires good understanding of the material properties and precaution during design and construction to extra care, but if well planned, it can be economically beneficial.

Research papers, University of Canterbury Library

This thesis describes research into developing a client/server ar- chitecture for a mobile Augmented Reality (AR) application. Following the earthquakes that have rocked Christchurch the city is now changed forever. CityViewAR is an existing mobile AR application designed to show how the city used to look before the earthquakes. In CityViewAR 3D virtual building models are overlaid onto video captured by a smartphone camera. However the current version of CityViewAR only allows users to browse information stored on the mobile device. In this research the author extends the CityViewAR application to a client-server model so that anyone can upload models and annotations to a server and have this information viewable on any smartphone running the application. In this thesis we describe related work on AR browser architectures, the system we developed, a user evaluation of the prototype system and directions for future work.

Research papers, University of Canterbury Library

Coastal and river environments are exposed to a number of natural hazards that have the potential to negatively affect both human and natural environments. The purpose of this research is to explain that significant vulnerabilities to seismic hazards exist within coastal and river environments and that coasts and rivers, past and present, have played as significant a role as seismic, engineering or socio-economic factors in determining the impacts and recovery patterns of a city following a seismic hazard event. An interdisciplinary approach was used to investigate the vulnerability of coastal and river areas in the city of Christchurch, New Zealand, following the Canterbury Earthquake Sequence, which began on the 4th of September 2010. This information was used to identify the characteristics of coasts and rivers that make them more susceptible to earthquake induced hazards including liquefaction, lateral spreading, flooding, landslides and rock falls. The findings of this research are applicable to similar coastal and river environments elsewhere in the world where seismic hazards are also of significant concern. An interdisciplinary approach was used to document and analyse the coastal and river related effects of the Canterbury earthquake sequence on Christchurch city in order to derive transferable lessons that can be used to design less vulnerable urban communities and help to predict seismic vulnerabilities in other New Zealand and international urban coastal and river environments for the future. Methods used to document past and present features and earthquake impacts on coasts and rivers in Christchurch included using maps derived from Geographical Information Systems (GIS), photographs, analysis of interviews from coastal, river and engineering experts, and analysis of secondary data on seismicity, liquefaction potential, geology, and planning statutes. The Canterbury earthquake sequence had a significant effect on Christchurch, particularly around rivers and the coast. This was due to the susceptibility of rivers to lateral spreading and the susceptibility of the eastern Christchurch and estuarine environments to liquefaction. The collapse of river banks and the extensive cracking, tilting and subsidence that accompanied liquefaction, lateral spreading and rock falls caused damage to homes, roads, bridges and lifelines. This consequently blocked transportation routes, interrupted electricity and water lines, and damaged structures built in their path. This study found that there are a number of physical features of coastal and river environments from the past and the present that have induced vulnerabilities to earthquake hazards. The types of sediments found beneath eastern Christchurch are unconsolidated fine sands, silts, peats and gravels. Together with the high water tables located beneath the city, these deposits made the area particularly susceptible to liquefaction and liquefaction-induced lateral spreading, when an earthquake of sufficient size shook the ground. It was both past and present coastal and river processes that deposited the types of sediments that are easily liquefied during an earthquake. Eastern Christchurch was once a coastal and marine environment 6000 years ago when the shoreline reached about 6 km inland of its present day location, which deposited fine sand and silts over this area. The region was also exposed to large braided rivers and smaller spring fed rivers, both of which have laid down further fine sediments over the following thousands of years. A significant finding of this study is the recognition that the Canterbury earthquake sequence has exacerbated existing coastal and river hazards and that assessments and monitoring of these changes will be an important component of Christchurch’s future resilience to natural hazards. In addition, patterns of recovery following the Canterbury earthquakes are highlighted to show that coasts and rivers are again vulnerable to earthquakes through their ability to recovery. This city’s capacity to incorporate resilience into the recovery efforts is also highlighted in this study. Coastal and river areas have underlying physical characteristics that make them increasingly vulnerable to the effects of earthquake hazards, which have not typically been perceived as a ‘coastal’ or ‘river’ hazard. These findings enhance scientific and management understanding of the effects that earthquakes can have on coastal and river environments, an area of research that has had modest consideration to date. This understanding is important from a coastal and river hazard management perspective as concerns for increased human development around coastlines and river margins, with a high seismic risk, continue to grow.