Search

found 2 results

Research papers, University of Canterbury Library

The aim of this report is to investigate the ductile performance of concrete tilt-up panels reinforced with cold-drawn mesh to improve the current seismic assessment procedure. The commercial impact of the project was also investigated. Engineering Advisory Group (EAG) guidelines state that a crack in a panel under face loading may be sufficient to fracture the mesh. The comments made by EAG regarding the performance of cold-drawn mesh may be interpreted as suggesting that assessment of such panels be conducted with a ductility of 1.0. Observations of tilt-up panel performance following the Christchurch earthquakes suggest that a ductility higher than μ=1.0 is likely to be appropriate for the response of panels to out-of-plane loading. An experimental test frame was designed to subject ten tilt-panel specimens to a cyclic quasi-static loading protocol. Rotation ductility, calculated from the force-displacement response from the test specimens, was found to range between 2.9 and 5.8. Correlation between tensile tests on 663L mesh, and data collected from instrumentation during testing confirmed that the mesh behaves as un-bonded over the pitch length of 150mm. Recommendation: Based on a moment-rotation assessment approach with an un-bonded length equal to the pitch of the mesh, a rotation ductility of μ=2.5 appears to be appropriate for the seismic assessment of panels reinforced with cold-drawn mesh.

Research papers, The University of Auckland Library

The Christchurch region of New Zealand experienced a series of major earthquakes and aftershocks between September 2010 and June 2011 which caused severe damage to the city’s infrastructure. The performance of tilt-up precast concrete buildings was investigated and initial observations are presented here. In general, tilt-up buildings performed well during all three major earthquakes, with mostly only minor, repairable damage occurring. For the in-plane loading direction, both loadbearing and cladding panels behaved exceptionally well, with no significant damage or failure observed in panels and their connections. A limited number of connection failures occurred due to large out-of-plane panel inertia forces. In several buildings, the connections between the panel and the internal structural frame appeared to be the weakest link, lacking in both strength and ductility. This weakness in the out-of-plane load path should be prevented in future designs.