Search

found 31 results

Research papers, Lincoln University

The recent earthquakes in Canterbury have left thousands of Christchurch residents’ homeless or facing the possibility of homelessness. The New Zealand Government, so far, have announced that 5,100 homes in Christchurch will have to be abandoned as a result of earthquake damaged land (Christchurch City Council, 2011). They have been zoned red on the Canterbury Earthquake Recovery Authority (CERA) map and there are another 10,000 that have been zoned orange, awaiting a decision (Christchurch City Council, 2011). This situation has placed pressures on land developers and local authorities to speed up the process associated with the development of proposed subdivisions in Christchurch to accommodate residents in this situation (Tarrant, 2011).

Images, Alexander Turnbull Library

Text reads 'New Chch subdivision?...' The cartoon shows a very snowy scene with several igloos; The subdivision is called 'Igloo Park' and the sign says 'Polar packages available'. Context: Christchurch, after being battered by the February 22 earthquake, the June 13 aftershock and last month's snowstorm have had another week of snow. The cartoon suggests that new subdivisions, necessary because of the earthquakes, could be filled with igloos. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Text across the top of the cartoon reads 'Greener pastures for red zone residents?... A new subdivision named 'Quakehaven' has streets named 'Wobble Way', 'Poopong Parade', 'Turd Tce.', 'Liquefaction Lane' etc. One of a couple visiting the new area says 'I've got a bad feeling about this new subdivision!' Context - Housing after the Christchurch earthquakes. After the first Land Report was delivered on 23rd June people whose houses were in the Red Zone had their properties bought up by the government and now have to move to new subdivisions. The suggestion in the cartoon is that the subdivisions may not be on safe ground. Quantity: 1 digital cartoon(s).

Research papers, Lincoln University

Following the 2010 and 2011 earthquakes Christchurch is undergoing extensive development on the periphery of the city. This has been driven in part by the large numbers of people who have lost their homes. Prior to the earthquakes, Christchurch was already experiencing placeless subdivisions and now these are being rolled out rapidly thanks to the efficiency of a formula that has been embraced by the Council, developers and the public alike. However, sprawling subdivisions have a number of issues including inefficient land use, limited housing types, high dependence on motor vehicles and low levels of resilience and no sense of place. Sense of place is of particular interest due to its glaring absence from new subdivisions and its growing importance in the literature. Research shows that sense of place has benefits to our feeling of belonging, well-being, and self-identity, particularly following a disaster. It improves the resilience and sustainability of our living environment and fosters a connection to the landscape thereby making us better placed to respond to future changes. Despite these benefits, current planning models such as new urbanism and transit-oriented design tend to give sense of place a low priority and as a result it can get lost. Given these issues, the focus of this research is “can landscape driven sense of place drive subdivision design without compromising on other urban planning criteria to produce subdivisions that address the issues of sprawl, as well as achieving the benefits associated with a strong sense of place that can improve our overall quality of life?” Answering this question required a thorough review of current urban planning and sense of place literature. This was used to critique existing subdivisions to gain a thorough understanding of the issues. The outcomes of this led to extensive design exploration which showed that, not only is it possible to design a subdivision with sense of place as the key driver but by doing this, the other urban planning criteria become easier to achieve.

Images, UC QuakeStudies

A poster in Kaiapoi showing the estimated timeframe for, and location of, likely residential land developments in Kaiapoi, the wider Waimakariri District and in the rural residential areas, based on major planning and subdivision applications with the Waimakariri Council as at February 2012.

Research papers, Lincoln University

It is no secret that there is a problem with the suburb of Aranui. Developed in the 1950s, Aranui and neighbouring Wainoni are an example of the large-scale, state-funded subdivisions of the time, yet, unlike similar developments in the North Island, they have received little to no attention from researchers. In light of the recent Canterbury earthquakes, this dissertation aims to trace the evolution of these suburbs until the 1970s and act as the first stage of a more comprehensive review of state housing and the Aranui/Wainoni area. By critically reviewing existing literature on state housing and housing policy in New Zealand, as well as undertaking archival research, this dissertation addresses the international influences on state housing in New Zealand generally and the development of the Aranui and Wainoni area more specifically in order to provide a foundation for answering the question, "What went so wrong?"

Research papers, University of Canterbury Library

As a consequence of the 2010 – 2011 Canterbury earthquake sequence, Christchurch experienced widespread liquefaction, vertical settlement and lateral spreading. These geological processes caused extensive damage to both housing and infrastructure, and increased the need for geotechnical investigation substantially. Cone Penetration Testing (CPT) has become the most common method for liquefaction assessment in Christchurch, and issues have been identified with the soil behaviour type, liquefaction potential and vertical settlement estimates, particularly in the north-western suburbs of Christchurch where soils consist mostly of silts, clayey silts and silty clays. The CPT soil behaviour type often appears to over-estimate the fines content within a soil, while the liquefaction potential and vertical settlement are often calculated higher than those measured after the Canterbury earthquake sequence. To investigate these issues, laboratory work was carried out on three adjacent CPT/borehole pairs from the Groynes Park subdivision in northern Christchurch. Boreholes were logged according to NZGS standards, separated into stratigraphic layers, and laboratory tests were conducted on representative samples. Comparison of these results with the CPT soil behaviour types provided valuable information, where 62% of soils on average were specified by the CPT at the Groynes Park subdivision as finer than what was actually present, 20% of soils on average were specified as coarser than what was actually present, and only 18% of soils on average were correctly classified by the CPT. Hence the CPT soil behaviour type is not accurately describing the stratigraphic profile at the Groynes Park subdivision, and it is understood that this is also the case in much of northwest Christchurch where similar soils are found. The computer software CLiq, by GeoLogismiki, uses assessment parameter constants which are able to be adjusted with each CPT file, in an attempt to make each more accurate. These parameter changes can in some cases substantially alter the results for liquefaction analysis. The sensitivity of the overall assessment method, raising and lowering the water table, lowering the soil behaviour type index, Ic, liquefaction cutoff value, the layer detection option, and the weighting factor option, were analysed by comparison with a set of ‘base settings’. The investigation confirmed that liquefaction analysis results can be very sensitive to the parameters selected, and demonstrated the dependency of the soil behaviour type on the soil behaviour type index, as the tested assessment parameters made very little to no changes to the soil behaviour type plots. The soil behaviour type index, Ic, developed by Robertson and Wride (1998) has been used to define a soil’s behaviour type, which is defined according to a set of numerical boundaries. In addition to this, the liquefaction cutoff point is defined as Ic > 2.6, whereby it is assumed that any soils with an Ic value above this will not liquefy due to clay-like tendencies (Robertson and Wride, 1998). The method has been identified in this thesis as being potentially unsuitable for some areas of Christchurch as it was developed for mostly sandy soils. An alternative methodology involving adjustment of the Robertson and Wride (1998) soil behaviour type boundaries is proposed as follows:  Ic < 1.31 – Gravelly sand to dense sand  1.31 < Ic < 1.90 – Sands: clean sand to silty sand  1.90 < Ic < 2.50 – Sand mixtures: silty sand to sandy silt  2.50 < Ic < 3.20 – Silt mixtures: clayey silt to silty clay  3.20 < Ic < 3.60 – Clays: silty clay to clay  Ic > 3.60 – Organics soils: peats. When the soil behaviour type boundary changes were applied to 15 test sites throughout Christchurch, 67% showed an improved change of soil behaviour type, while the remaining 33% remained unchanged, because they consisted almost entirely of sand. Within these boundary changes, the liquefaction cutoff point was moved from Ic > 2.6 to Ic > 2.5 and altered the liquefaction potential and vertical settlement to more realistic ii values. This confirmed that the overall soil behaviour type boundary changes appear to solve both the soil behaviour type issues and reduce the overestimation of liquefaction potential and vertical settlement. This thesis acts as a starting point towards researching the issues discussed. In particular, future work which would be useful includes investigation of the CLiq assessment parameter adjustments, and those which would be most suitable for use in clay-rich soils such as those in Christchurch. In particular consideration of how the water table can be better assessed when perched layers of water exist, with the limitation that only one elevation can be entered into CLiq. Additionally, a useful investigation would be a comparison of the known liquefaction and settlements from the Canterbury earthquake sequence with the liquefaction and settlement potentials calculated in CLiq for equivalent shaking conditions. This would enable the difference between the two to be accurately defined, and a suitable adjustment applied. Finally, inconsistencies between the Laser-Sizer and Hydrometer should be investigated, as the Laser-Sizer under-estimated the fines content by up to one third of the Hydrometer values.

Research papers, University of Canterbury Library

Using greater Christchurch as a case study, this research seeks to understand the key drivers of residential choice of families with children who live in recently developed, low-density greenfield subdivisions. In particular, the research examines the role that transport-related implications play in families’ choice of residence and location. It also explores the lived experience of the quotidian travel of these households, and the intrinsic value of their time in the car. While the research is situated in one particular location, it is designed to gain an understanding of urban processes and residents’ experiences of these as applicable to broader settings. Concerns about the pernicious environmental, fiscal, and wellbeing effects of sprawling urban form have been growing over the past few decades, inciting many cities including Christchurch to start shifting planning policies to try and achieve greater intensification and a denser development pattern. The 2010/2011 Christchurch earthquake sequence and its destruction of thousands of homes however created huge pressure for housing development, the bulk of which is now occurring on greenfield sites on the peripheries of Christchurch City and its neighbouring towns. Drawing on the insights provided by a wide body of both qualitative and quantitative literature on residential choice, transport and urban form, and mobilities literature as a basis, this research is interested in the attraction of these growing neighbourhoods to families, and puts the focus firmly on the attitudes, values, motivations, decisions, and lived experience of those who live in the growing suburbs of Christchurch.

Audio, Radio New Zealand

DAVID SHEARER to the Minister for State Owned Enterprises: Has the Government met the five criteria the Prime Minister laid out for proceeding with asset sales? Dr RUSSEL NORMAN to the Minister of Finance: Will New Zealanders have money taken from their bank accounts to fund a bank bailout under his proposed Open Bank Resolution scheme? TODD McCLAY to the Minister of Finance: What reports has he received on New Zealand's balance of payments? Hon ANNETTE KING to the Minister of Health: Does he stand by all his statements regarding &quot;Better, Sooner, More Convenient&quot; health care; if not, why not? MARK MITCHELL to the Minister of Police: What reports has she received from Police on the success of pre-charge warnings? PHIL TWYFORD to the Minister of Housing: Why did he tell the House that, even if the Auckland plan took effect in September, new subdivisions would not be available until 2016-17, when the advice he tabled from Roger Blakely of Auckland Council shows that if the unitary plan takes effect in September new land would be available two years earlier? ALFRED NGARO to the Minister for Social Development: How will the Social Security (Benefit Categories and Work Focus) Amendment Bill back people off welfare and into work? GRANT ROBERTSON to the Prime Minister: Does he stand by all his statements on the actions and involvement of the Department of the Prime Minister and Cabinet and the Government Communications and Security Bureau in Operation Debut? SCOTT SIMPSON to the Minister of Health: What is the Government doing to extend access to free flu vaccines? METIRIA TUREI to the Minister for Social Development: Does she have an obligation, as Social Development Minister, to ensure all policy she is responsible for will be good for children and their families? Hon KATE WILKINSON to the Minister for Primary Industries: What announcement has he made on the drought in New Zealand? Rt Hon WINSTON PETERS to the Minister for Canterbury Earthquake Recovery: Have allegations of fraud and corruption involving Canterbury earthquake recovery and rebuild contracts been raised with him as Minister; if so, what specific steps has he taken to address them?

Research papers, University of Canterbury Library

The Canterbury Region is susceptible to a variety of natural hazards, including earthquakes, landslides and climate hazards. Increasing population and tourism within the region is driving development pressures and as more and more development occurs, the risk from natural hazards increases. In order to avoid development occurring in unacceptably vulnerable locations, natural hazard assessments are required. This study is a reconnaissance natural hazard assessment of Lakes Lyndon, Coleridge and Tekapo. There is restricted potential for development at Lake Lyndon, because the land surrounding the lake is owned by the Crown and has a number of development restrictions. However, there is the potential for conservation or recreation-linked development to occur. There is more potential for development at Lake Coleridge. Most of the land surrounding the lake is privately owned and has less development restrictions. The majority of land surrounding Lake Tekapo is divided into Crown-owned pastoral leases, which are protected from development, such as subdivision. However, there are substantial areas around the lake, which are privately owned and, therefore, have potential for development. Earthquake, landslide and climate hazards are the main natural hazards threatening Lakes Lyndon, Coleridge and Tekapo. The lakes are situated in a zone of active earth deformation in which large and relatively frequent earthquakes are produced. A large number of active faults lie within 15 km of each lake, which are capable of producing M7 or larger earthquakes. Ground shaking, liquefaction, landslides, tsunami and seiches are among the consequences of earthquakes, all of which have the potential to cause severe damage to lives, lifelines and infrastructure. Landslides are also common in the landscape surrounding the lakes. The majority of slopes surrounding the lakes are at significant risk from earthquake-induced failure under moderate to strong earthquake shaking. This level of shaking is expected to occur in any 50 year period around Lakes Lyndon and Coleridge, and in any 150 year period around Lake Tekapo. Injuries, fatalities and property damage can occur directly from landslide impact or from indirect effects such as flooding from landslide-generated tsunami or from landslide dam outbreaks. Lakes Lyndon, Coleridge and Tekapo are also susceptible to climate hazards, such as high winds, drought, heavy snowfall and heavy rainfall, which can lead to landslides and flooding. Future climate change due to global warming is most likely going to affect patterns of frequency and magnitudes of extreme weather events, leading to an increase in climate hazards. Before development is permitted around the lakes, it is essential that each of these hazards is considered so that unacceptably vulnerable areas can be avoided.