This report presents an overview of the soil profile characteristics at a number of strong motion station (SMS) sites in Christchurch and its surrounds. An extensive database of ground motion records has been captured by the SMS network in the Canterbury region during the Canterbury earthquake sequence. However in order to comprehensively understand the ground motions recorded at these sites and to be able to relate these motions to other locations, a detailed understanding of the shallow geotechnical profile at each SMS is required. The original NZS1170.5 (SNZ 2004) site subsoil classifications for each SMS site is based on regional geological information and well logs located at varying distances from the site. Given the variability of Christchurch soils, more detailed investigations are required in close vicinity to each SMS to better understand stratigraphy and soil properties, which are important in seismic site response. In this regard, CPT, SPT and borehole data, shear wave velocity (Vs) profiles, and horizontal to vertical spectral ratio measurements (H/V) in close vicinity to the SMS were used to develop representative soil profiles at each site. NZS1170.5 (SNZ 2004) site subsoil classifications were updated using Vs and SPT N60 criteria. Site class E boundaries were treated as a sliding scale rather than as a discrete boundary to account for locations with similar site effects potential, an approach which was shown to result in a better delineation between the site classes. SPT N60 values often indicate a stiffer site class than the Vs data for softer soil sites, highlighting the disparity between the two site investigation techniques. Both SPT N60 and Vs based site classes did not always agree with the original site classifications. This emphasises the importance of having detailed site‐specific information at SMS locations in order to properly classify them. Furthermore, additional studies are required to harmonize site classification based on SPT N60 and Vs. Liquefaction triggering assessments were carried out for the Darfield and Christchurch earthquakes, and compared against observed liquefaction surface manifestations and ground motions characteristics at each SMS. In general, the characteristics of the recorded ground motions at each site correlate well with the triggering analyses. However, at sites that likely liquefied at depth (as indicated by triggering analyses and/or inferred from the characteristics of the recorded surface acceleration time series), the presence of a non‐liquefiable crust layer at many of the SMS locations prevented the manifestation of any surface effects.
A vacant demolition site where buildings once stood. Weeds are growing on the site.
A vacant demolition site looking towards Tuam and High Streets. Weeds are growing on the site.
A photograph of the former site of the Locke family's house at 392 Oxford Terrace. The photographer comments, "The house was deconstructed and rebuilt on another site". Grass has grown over the site.
A photograph of the former site of the Locke family's house at 392 Oxford Terrace. The photographer comments, "The house was deconstructed and rebuilt on another site". Grass has grown over the site.
A photograph of the former site of the Locke family's house at 392 Oxford Terrace. The Locke's house was deconstructed after their land was zoned Red. The photographer comments, "The house was deconstructed and rebuilt on another site". Grass has grown over the site.
A photograph of the former site of the house at 466 Oxford Terrace, taken from the site next door. The house was demolished after the land was zoned Red. Wire fencing has been placed around the site as a cordon.
At the start of an archaeological investigation we often consult historical documents to learn as much as we can about a site’s past. Such research can identify the buildings that were once present, the people associated with the site through … Continue reading →
In our last post, Jeremy talked about the site of H. F. Stevens, wholesale druggist, on Worcester Street near Cathedral Square. We excavated the site in 2011 and found a number of artefacts, including the Udolpho Wolfe’s bottles featured last … Continue reading →
A photograph of the former site of a block of apartments at 440 Oxford Terrace. The apartments were demolished after the land was zoned Red. Grass has begun to grow over the site. The number 466 has been spray-painted on the footpath in front, as well as the numbers of each apartment. This number is the incorrect street number for the site.
A photograph of the former site of Siobhan Murphy's house at 436 Oxford Terrace. Murphy's house was demolished after her land was zoned Red. Grass has grown over the site.
A photograph of the former site of Siobhan Murphy's house at 436 Oxford Terrace. Murphy's house was demolished after her land was zoned Red. Grass has grown over the site.
A photograph of the former site of the house at 466 Oxford Terrace. The house was demolished after the land was zoned Red. Wire fencing has been placed in front of the site.
A photograph of the former site of a house at 466 Oxford Terrace. The house was demolished after the land was zoned Red. Grass has begun to grow on the site.
A photograph of the former site of a house at 58 Bangor Street. The house was demolished after the land was zoned Red. The grass has begun to grow over the site.
A photograph of the former site of the Locke family's house at 392 Oxford Terrace. The Locke's house was deconstructed after their land was zoned Red. Grass has grown over the site.
A photograph of the former site of Siobhan Murphy's house at 436 Oxford Terrace. Murphy's house was demolished after her land was zoned Red. Grass has grown over the site.
A photograph of the former site of the houses at 422, 424, and 426 Oxford Terrace. The houses were demolished after the land was zoned Red. Grass has begun to grow over the sites.
The Avon-Heathcote Estuary is of significant value to Christchurch due to its high productivity, biotic diversity, proximity to the city, and its cultural, recreational and aesthetic qualities. Nonetheless, it has been subjected to decades of degradation from sewage wastewater discharges and encroaching urban development. The result was a eutrophied estuary, high in nitrogen, affected by large blooms of nuisance macroalgae and covered by degraded sediments. In March 2010, treated wastewater was diverted from the estuary to a site 3 km offshore. This quickly reduced water nitrogen by 90% within the estuary and, within months, there was reduced production of macroalgae. However, a series of earthquakes beginning in September 2010 brought massive changes: tilting of the estuary, changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sediment and nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are an important buffer against eutrophication. Therefore, in tandem with the wastewater diversion, they could underpin much of the recovery of the estuary. Overall, the new sediments were less favourable for benthic microalgal growth and recolonisation, but were less contaminated than old sediments at highly eutrophic sites. Because the new sediments were less contaminated than the old sediments, they could help return the estuary to a noneutrophic state. However, if the new sediments, which are less favourable for microalgal growth, disperse over the old sediments at highly eutrophic sites, they could become contaminated and interfere with estuarine recovery. Therefore, recovery of microalgal communities and the estuary was expected to be generally long, but variable and site-specific, with the least eutrophic sites recovering quickly, and the most eutrophic sites taking years to return to a pre-earthquake and non-eutrophied state. changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sedimen tand nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are
A photograph of the former site of the houses at 422, 424, and 426 Oxford Terrace. The houses were demolished after the land was zoned Red. Grass has begun to grow over the sites.
A photograph of the former site of Doug Sexton's house at 378 Oxford Terrace. Sexton's house was demolished after his land was zoned Red. Grass has begun to grow in the site.
A video of an interview with artefact analyst Gwen Jackson, about the artefacts found at the site of the Theatre Royal. Hundreds of artefacts were found under the Isaac Theatre Royal, including bottles and ceramic shards. This was part of a greater project by archaeologists to examine pre-1900 sites in the Christchurch central city before work is conducted on them. Archaeological assessment of pre-1900 buildings is required by the 1993 Historic Places Act before work can be done on the site.
A PDF copy of pages 334-335 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Pages Rd Fulton Hogan Site Mural'. Photos: Shaun Murphy
A PDF copy of pages 296-297 of the book Christchurch: The Transitional City Pt IV. The pages document the transitional project 'Piko Shop Site'. Photos with permission from Greening the Rubble
A photograph of the former site of Siobhan Murphy's house at 436 Oxford Terrace. Murphy's house was demolished after her land was zoned Red. The house next door has also been demolished. Grass has grown over both sites.
A photograph of the former site of the Locke family's house at 392 Oxford Terrace. The Locke's house was deconstructed after their land was zoned Red. The photographer comments, "The house was deconstructed and rebuilt on another site".
A photograph of the former site of the Locke family's house at 392 Oxford Terrace. The Locke's house was deconstructed after their land was zoned Red. The photographer comments, "The house was deconstructed and rebuilt on another site".
A photograph of the former site of the Locke family's house at 392 Oxford Terrace. The Locke's house was deconstructed after their land was zoned Red. The photographer comments, "The house was deconstructed and rebuilt on another site".
A photograph of the former site of the Locke family's house at 392 Oxford Terrace. The Locke's house was deconstructed after their land was zoned Red. The photographer comments, "The house was deconstructed and rebuilt on another site".
None