Search

found 52 results

Images, eqnz.chch.2010

A crane topples over on Victoria Street while taking glass up to some windows. No one was hurt and the glass never broke. Victoria Street was closed from 7:30am to later in the evening. This all happen on the Knox Plaza building site. Christchurch October 13, 2014 New Zealand.

Images, eqnz.chch.2010

20160703_144759_GT-S7275T-04 New sea wall at Redcliffs (185/366) I went for a drive in my second car mainly to charge the battery up and forgot to take my camera gear so only had my phone. This is the new rock wall to replace the severely damaged previous one (in the February 2011 earthquake). Work is still underway on the car parking and p...

Research papers, University of Canterbury Library

With sea level rise (SLR) fast becoming one of the most pressing matters for governments worldwide, there has been mass amounts of research done on the impacts of SLR. However, these studies have largely focussed on the ways that SLR will impact both the natural and built environment, along with how the risk to low-lying coastal communities can be mitigated, while the inevitable impacts that this will have on mental well-being has been understudied. This research has attempted to determine the ways in which SLR can impact the mental well-being of those living in a low-lying coastal community, along with how these impacts could be mitigated while remaining adaptable to future environmental change. This was done through conducting an in-depth literature review to understand current SLR projections, the key components of mental well-being and how SLR can influence changes to mental well-being. This literature review then shaped a questionnaire which was distributed to residents of the New Brighton coastline. This questionnaire asked respondents how they interact with the local environment, how much they know about SLR and its associated hazards, whether SLR causes any level of stress or worry along with how respondents feel that these impacts could be mitigated. This research found that SLR impacts the mental well-being of those living in low-lying coastal communities through various methods: firstly, the respondents perceived risk to SLR and its associated hazards, which was found to be influenced by the suburbs that respondents live in, their knowledge of SLR, their main sources of information and the prior experience of the Canterbury Earthquake Sequence (CES). Secondly, the financial aspects of SLR were also found to be drivers of stress or worry, with depreciating property values and rising insurance premiums being frequently noted by respondents. It was found that the majority of respondents agreed that being involved in and informed of the protection process, having more readable and accurate information, and an increased engagement with community events and greenspaces would help to reduce the stress or worry caused by SLR, while remaining adaptable to future environmental change.

Research papers, University of Canterbury Library

Elevated levels of trace elements in the environment are of great concern because of their persistence, and their high potential to harm living organisms. The exposure of aquatic biota to trace elements can lead to bioaccumulation, and toxicity can result. Furthermore, the transfer of these elements through food chains can result in exposure to human consumers. Sea-fill or coastal fill sites are among the major anthropogenic sources of trace elements to the surrounding marine environment. For example, in the Maldives, Thilafushi Island is a sea-fill site consisting of assorted municipal solid waste, with multiple potential sources of trace elements. However, there is limited data on environmental trace element levels in the Maldives, and although seafood is harvested from close to this site, there is no existing data regarding trace element levels in Maldivian diets. Following the Christchurch earthquakes of 2011,

Research Papers, Lincoln University

The world is constantly changing. Christchurch, New Zealand, has recently experienced drastic changes after earthquakes struck the city. The earthquakes caused the city to physically shake, and the land to sink in some places and rise in others. Now further change is forcast and parts of Christchurch could be under water by 2115 according to experts. Climate change induced sea level rise is recognised as a international issue with potential impacts for coastal communities all over the world. The Chrischtchurch City Council is required to have a 100-year planning horizon for sea level rise and this means planning for at least one meter, and possibly up to two meters, of sea level rise by 2115. This dissertation investigates the planning response to slow onset disasters, change, and uncertainty, using the example of sea-level rise in Christchurch, and it examines the role of public participation in this. To achieve this, the ways in which planning theory and practice acknowledge uncertainty, and cope with change, were critically analysed along with the Christchurch City Council’s response to the Tonkin and Taylor predictions and modelling. Semi-structured interviews with professionals in natural hazards risk reduction, policy, and planning were conducted, and the previous and proposed Christchurch City District Plans were compared. Planning for sea level rise in Christchurch provides an example of how planners may cope with slow onset change. The results of this dissertation suggests that the favoured risk reduction strategy for coastal communities in Christchurch is an adaptation strategy, and at present there is no sign of managed retreat being employed. The results also suggests using a planning approach that involves public participation for best results when planning for change, uncertainty or slow onset disasters.

Videos, UC QuakeStudies

A video telling the story of a Dallington house which was built by Bill Cooper in 1957. The house was demolished last month as part of the clearance of the Christchurch residential red zone. The story of the house is used to illustrate what is happening in many Christchurch suburbs. The video also includes the story of a sea elephant that lived in the Avon River in the 1970s and 1980s.

Articles, Christchurch uncovered

The chilly weather in Christchurch of late has many of us dreaming of glistening seas, white sand beaches and pina coladas. A while ago, “winter is coming” gags were being fired about among the many Game of Thrones fans, and … Continue reading →

Research Papers, Lincoln University

Prognostic modelling provides an efficient means to analyse the coastal environment and provide effective knowledge for long term urban planning. This paper outlines how the use of SWAN and Xbeach numerical models within the ESRI ArcGIS interface can simulate geomorphological evolution through hydrodynamic forcing for the Greater Christchurch coastal environment. This research followed the data integration techniques of Silva and Taborda (2012) and utilises their beach morphological modelling tool (BeachMM tool). The statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 were examined to determine whether these requirements are currently being complied with when applying the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013), and it would appear that it does not meet those requirements. This is because coastal hazard risk has not been thoroughly quantified by the installation of the Canterbury Earthquake Recovery Authority (CERA) residential red zone. However, the Christchurch City Council’s (CCC) flood management area does provide an extent to which managed coastal retreat is a real option. This research assessed the effectiveness of the prognostic models, forecasted a coastline for 100 years from now, and simulated the physical effects of extreme events such as storm surge given these future predictions. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon similar to the CCC’s flood management area. There are complex interactions at the Waimakariri River mouth with very high rates of accretion and erosion within a small spatial scale due to the river discharge. There is domination of the marine environment over the river system determined by the lack of generation of a distinct river delta, and river channel has not formed within the intertidal zone clearly. The Avon-Heathcote ebb tidal delta aggrades on the innner fan and erodes on the outer fan due to wave domination. The BeachMM tool facilitates the role of spatial and temporal analysis effectively and the efficiency of that performance is determined by the computational operating system.

Images, eqnz.chch.2010

Some of the recent aftershocks located around Banks Peninsula since the 7.1 earthquake have resulted in renewed hot springs activity with the distinct sulphurous smells being the result of deep seated water reaching the surface. Known hot springs are located at Motukarara, Rapaki Bay, Heathcote Valley, and Purau. You can see the distant crater r...

Images, UC QuakeStudies

A large chess board made from sand and broken shells, with a painted beach scene on the wall behind. The photographer comments, "After all the suggestions put on the wall on what to do in this area, which was once an earthquake damaged shop, they have made the chess board, painted a seaside scene on the wall and created a small wall of tyres".

Images, UC QuakeStudies

A small wooden cross is inserted between stones laid out in the shape of a large cross. The photographer comments, "This is an Earthquake Memorial on Manchester Street, Christchurch, New Zealand. This message is on the tree next to the memorial: 'Earthquake Memorial. 185 people died as a result of the 22 February 2011 earthquake. 185 precious lives are remembered here, with 185 pieces of Halswell stone recovered from St Luke's Church, damaged beyond repair on that day. May they rest in peace. St Luke's in the City'".

Research papers, University of Canterbury Library

Coastal margins are exposed to rising sea levels that present challenging circumstances for natural resource management. This study investigates a rare example of tectonic displacement caused by earthquakes that generated rapid sea-level change in a tidal lagoon system typical of many worldwide. This thesis begins by evaluating the coastal squeeze effects caused by interactions between relative sea-level (RSL) rise and the built environment of Christchurch, New Zealand, and also examples of release from similar effects in areas of uplift where land reclamations were already present. Quantification of area gains and losses demonstrated the importance of natural lagoon expansion into areas of suitable elevation under conditions of RSL rise and showed that they may be necessary to offset coastal squeeze losses experienced elsewhere. Implications of these spatial effects include the need to provide accommodation space for natural ecosystems under RSL rise, yet other land-uses are likely to be present in the areas required. Consequently, the resilience of these environments depends on facilitating transitions between human land-uses either proactively or in response to disaster events. Principles illustrated by co-seismic sea-level change are generally applicable to climate change adaptation due to the similarity of inundation effects. Furthermore, they highlight the potential role of non-climatic factors in determining the overall trajectory of change. Chapter 2 quantifies impacts on riparian wetland ecosystems over an eight year period post- quake. Coastal wetlands were overwhelmed by RSL rise and recovery trajectories were surprisingly slow. Four risk factors were identified from the observed changes: 1) the encroachment of anthropogenic land-uses, 2) connectivity losses between areas of suitable elevation, 3) the disproportionate effect of larger wetland vulnerabilities, and 4) the need to protect new areas to address the future movement of ecosystems. Chapter 3 evaluates the unique context of shoreline management on a barrier sandspit under sea-level rise. A linked scenario approach was used to evaluate changes on the open coast and estuarine shorelines simultaneously and consider combined effects. The results show dune loss from a third of the study area using a sea-level rise scenario of 1 m over 100 years and with continuation of current land-uses. Increased exposure to natural hazards and accompanying demand for seawalls is a likely consequence unless natural alternatives can be progressed. In contrast, an example of managed retreat following earthquake-induced subsidence of the backshore presents a new opportunity to restart saltmarsh accretion processes seaward of coastal defences with the potential to reverse decades of degradation and build sea-level rise resilience. Considering both shorelines simultaneously highlights the existence of pinch-points from opposing forces that result in small land volumes above the tidal range. Societal adaptation is delicately poised between the paradigms of resisting or accommodating nature and challenged by the long perimeter and confined nature of the sandspit feature. The remaining chapters address the potential for salinity effects caused by tidal prism changes with a focus on the conservation of īnanga (Galaxias maculatus), a culturally important fish that supports New Zealand‘s whitebait fishery. Methodologies were developed to test the hypothesis that RSL changes would drive a shift in the distribution of spawning sites with implications for their management. Chapter 4 describes a new practical methodology for quantifying the total productivity and spatiotemporal variability of spawning sites at catchment scale. Chapter 5 describes the novel use of artificial habitats as a detection tools to help overcome field survey limitations in degraded environments where egg mortality can be high. The results showed that RSL changes resulted in major shifts in spawning locations and these were associated with new patterns of vulnerability due to the continuation of pre-disturbance land-uses. Unexpected findings includes an improved understanding of the spatial relationship between salinity and spawning habitat, and identification of an invasive plant species as important spawning habitat, both with practical management implications. To conclude, the design of legal protection mechanisms was evaluated in relation to the observed habitat shifts and with a focus on two new planning initiatives that identified relatively large protected areas (PAs) in the lower river corridors. Although the larger PAs were better able to accommodate the observed habitat shifts inefficiencies were also apparent due to spatial disparities between PA boundaries and the values requiring protection. To reduce unnecessary trade-offs with other land-uses, PAs of sufficient size to cover the observable spatiotemporal variability and coupled with adaptive capacity to address future change may offer a high effectiveness from a network of smaller PAs. The latter may be informed by both monitoring and modelling of future shifts and these are expected to include upstream habitat migration driven by the identified salinity relationships and eustatic sea-level rise. The thesis concludes with a summary of the knowledge gained from this research that can assist the development of a new paradigm of environmental sustainability incorporating conservation and climate change adaptation. Several promising directions for future research identified within this project are also discussed.

Audio, Radio New Zealand

University of Canterbury's Professor David Schiel is looking at how biological habitats are responding and recovering along the approximately 130km of coastline effected by November's magnitude 7.8 earthquakes. He wants people who are riding quad bikes over the newly uplifted land to be mindful of the possible consequences on the bird and sea life living there.

Audio, Radio New Zealand

For many years the Heathcote-Avon estuary was the dumping ground for Christchurch's sewage. Then, in 2010, the wastewater was diverted well out to sea, via a long pipe. David Schiel from the University of Canterbury and John Zeldis from NIWA were investigating the effects of this diversion on the health of estuary when the 2011 Christchurch earthquakes happened, re-engineering both the estuary and their experiments.

Research Papers, Lincoln University

Millions of urban residents around the world in the coming century will experience severe landscape change – including increased frequencies of flooding due to intensifying storm events and impacts from sea level rise. For cities, collisions of environmental change with mismatched cultural systems present a major threat to infrastructure systems that support urban living. Landscape architects who address these issues express a need to realign infrastructure with underlying natural systems, criticizing the lack of social and environmental considerations in engineering works. Our ability to manage both society and the landscapes we live in to better adapt to unpredictable events and landscape changes is essential if we are to sustain the health and safety of our families, neighbourhoods, and wider community networks. When extreme events like earthquakes or flooding occur in developed areas, the feasibility of returning the land to pre-disturbance use can be questioned. In Christchurch for example, a large expanse of land (630 hectares) within the city was severely damaged by the earthquakes and judged too impractical to repair in the short term. The central government now owns the land and is currently in the process of demolishing the mostly residential houses that formed the predominant land use. Furthermore, cascading impacts from the earthquakes have resulted in a general land subsidence of .5m over much of eastern Christchurch, causing disruptive and damaging flooding. Yet, although disasters can cause severe social and environmental distress, they also hold great potential as a catalyst to increasing adaption. But how might landscape architecture be better positioned to respond to the potential for transformation after disaster? This research asks two core questions: what roles can the discipline of landscape architecture play in improving the resilience of communities so they become more able to adapt to change? And what imaginative concepts could be designed for alternative forms of residential development that better empower residents to understand and adapt the infrastructure that supports them? Through design-directed inquiry, the research found landscape architecture theory to be well positioned to contribute to goals of social-ecological systems resilience. The discipline of landscape architecture could become influential in resilience-oriented multi disciplinary collaborations, with our particular strengths lying in six key areas: the integration of ecological and social processes, improving social capital, engaging with temporality, design-led innovation potential, increasing diversity and our ability to work across multiple scales. Furthermore, several innovative ideas were developed, through a site-based design exploration located within the residential red zone, that attempt to challenge conventional modes of urban living – concepts such as time-based land use, understanding roads as urban waterways, and landscape design and management strategies that increase community participation and awareness of the temporality in landscapes.

Audio, Radio New Zealand

In half an hour, the first passenger train since the devastating Kaikoura earthquake will depart Picton for Christchurch. The 7.8 earthquake that struck the region in 2016 ripped up much of the scenic Coastal Pacific railway - sweeping kilometres of tracks out to sea and buried beneath slips. The rebuild of the railway line has taken two years and the efforts of nearly 1700 workers. Todd Moyle is KiwiRail's acting chief executive. He talks to Susie Ferguson.

Images, UC QuakeStudies

A digitally manipulated image of a high-reach excavator demolishing a building. The photographer comments, "After the earthquakes in Christchurch, New Zealand the demolition of most of the City Centre began. After two years the government thought that the progress was far too slow, so began the start of the automatic demolition. Luckily when the solar powered demolition machines started to cause indiscriminate death and destruction they were isolated to the South Island and unable to cross the seas".