Cracking in the brickwork of a residential building.
Building wreckage behind a residential property on Peterborough Street.
A photograph of a dusty monitor in an earthquake-damaged building on Poplar Street taken during the Residential Access Project. The Residential Access Project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake. Dislodged bricks can also be seen around the monitor.
A photograph of a room inside a flat on Poplar Street taken during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The building's outer wall has crumbled leaving the room exposed.
A photograph of a room inside a flat on Poplar Street taken during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The building's outer wall has crumbled leaving the room exposed.
A photograph of a room inside a flat on Poplar Street taken during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The building's outer wall has crumbled leaving the room exposed.
A photograph of a room inside a flat on Poplar Street taken during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The building's outer wall has crumbled leaving the room exposed.
A photograph of a room inside a flat on Poplar Street taken during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The building's outer wall has crumbled leaving the room exposed.
A photograph of workers from the Residential Access Project sitting outside the Alice in Videoland Building on the corner of Tuam and High Streets. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes.
A photograph of Brandon, Elizabeth Ackerman and Danica Nel on the site of a demolished building on Tuam Street. The trio can be seen wearing hard hats and florescent vests. The photograph was taken during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
A residential property that has been damaged by the earthquakes. Next to it is pile of building rubble and bits of furniture.
A residential property that has been damaged by the earthquakes. Next to it is pile of building rubble and bits of furniture.
A photograph of an Urban Search and Rescue team member examining the contents of a flat on Poplar Street during the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes. The buildings wall has crumbled leaving the room exposed.
A photograph of the site of a demolished building on Tuam Street which is being used as a car park. The photograph was taken during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
A photograph of workers in fluorescent vests standing in front of the earthquake damaged McKenzie and Willis Building. The photograph was taken on 29 April 2011 during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
A photograph of two workers standing in the site of a demolished building on Tuam Street which is being used as a car park. The photograph was taken during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
A fence around a residential property where the side wall has collasped, exposing the interior structures and fixtures. Piles of building rubble are contained in the fencing.
A photograph of Elizabeth Ackerman and Danica Nel standing next to trailer on the site of a demolished building on Tuam Street. The duo can be seen wearing hard hats and florescent vests. The photograph was taken during the Residential Access Project which gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.
Mesh fencing around a residential property. A recyling and an organics bin have been used to support the fencing, and inside a pile of building rubble can be seen.
Damage to a residential building near Bealey Avenue. The brick frontage has completely collapsed exposing the interior, and the roof is supported by jacks. A red sticker has been placed on the door.
Damage seen around a residential property, where a section of the wall has separated from the building. Fencing and tape have been placed around the section, and a notice on the fence says "Danger. Do not enter".
Damage seen around a residential property, where a section of the wall has separated from the building. Fencing and tape have been placed around the section, and a notice on the fence says "Danger. Do not enter".
A photograph captioned by BeckerFraserPhotos, "A damaged residential property on New Brighton road. The property is on an angle and the garage door won't shut because of damage to the building".
The EQC (Earthquake Commission) has developed new standards and designs to help rebuild Christchurch after the earthquakes of 2010 and 2011. The Department of Building and Housing have produced some generic building foundation and floor designs that can be used for residential homes being built or repaired on liquefied, tilting, unsettled and/or damaged land. (RebuildChristchurch.co.nz) Quantity: 1 digital cartoon(s).
Relates to the three new categories for residential foundation design that have been developed and will be required for repairing and rebuilding homes in Canterbury following the earthquakes of 2010 and 2011. The 'zones' referred to in the cartoon are the colours designated to different degrees of damage to particular areas or buildings in Christchurch after the earthquakes. Quantity: 1 digital cartoon(s).
A photograph of a residential property in the Christchurch central city with USAR codes spray-painted on the driveway and "No go" spray-painted on the front window and door. A red sticker in the window indicates that the building is unsafe to enter. Cordon tape has been draped around the side, cordoning off a pile of bricks.
As part of the 'Project Masonry' Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. In addition, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake and brief suggestions are provided regarding appropriate seismic retrofit and remediation techniques for stone masonry buildings. http://www.nzsee.org.nz/publications/nzsee-quarterly-bulletin/
Timber has experienced renewed interests as a sustainable building material in recent times. Although traditionally it has been the prime choice for residential construction in New Zealand and some other parts of the world, its use can be increased significantly in the future through a wider range of applications, particularly when adopting engineered wood material, Research has been started on the development of innovative solutions for multi-storey non-residential timber buildings in recent years and this study is part of that initiative. Application of timber in commercial and office spaces posed some challenges with requirements of large column-free spaces. The current construction practice with timber is not properly suited for structures with the aforementioned required characteristics and new type of structures has to be developed for this type of applications. Any new structural system has to have adequate capacity for carry the gravity and lateral loads due to occupancy and the environmental effects. Along with wind loading, one of the major sources of lateral loads is earthquakes. New Zealand, being located in a seismically active region, has significant risk of earthquake hazard specially in the central region of the country and any structure has be designed for the seismic loading appropriate for the locality. There have been some significant developments in precast concrete in terms of solutions for earthquake resistant structures in the last decade. The “Hybrid” concept combining post-tensioning and energy dissipating elements with structural members has been introduced in the late 1990s by the precast concrete industry to achieve moment-resistant connections based on dry jointed ductile connections. Recent research at the University of Canterbury has shown that the concept can be adopted for timber for similar applications. Hybrid timber frames using post-tensioned beams and dissipaters have the potential to allow longer spans and smaller cross sections than other forms of solid timber frames. Buildings with post-tensioned frames and walls can have larger column-free spaces which is a particular advantage for non-residential applications. While other researchers are focusing on whole structural systems, this research concentrated on the analysis and design of individual members and connections between members or between member and foundation. This thesis extends existing knowledge on the seismic behaviour and response of post-tensioned single walls, columns under uni-direction loads and small scale beam-column joint connections into the response and design of post-tensioned coupled walls, columns under bi-directional loading and full-scale beam-column joints, as well as to generate further insight into practical applications of the design concept for subassemblies. Extensive experimental investigation of walls, column and beam-column joints provided valuable confirmation of the satisfactory performance of these systems. In general, they all exhibited almost complete re-centering capacity and significant energy dissipation, without resulting into structural damage. The different configurations tested also demonstrated the flexibility in design and possibilities for applications in practical structures. Based on the experimental results, numerical models were developed and refined from previous literature in precast concrete jointed ductile connections to predict the behaviour of post-tensioned timber subassemblies. The calibrated models also suggest the values of relevant parameters for applications in further analysis and design. Section analyses involving those parameters are performed to develop procedures to calculate moment capacities of the subassemblies. The typical features and geometric configurations the different types of subassemblies are similar with the only major difference in the connection interfaces. With adoption of appropriate values representing the corresponding connection interface and incorporation of the details of geometry and configurations, moment capacities of all the subassemblies can be calculated with the same scheme. That is found to be true for both post-tensioned-only and hybrid specimens and also applied for both uni-directional and bi-directional loading. The common section analysis and moment capacity calculation procedure is applied in the general design approach for subassemblies.
The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.
An often overlooked aspect of urban housing development is the composition of the space between buildings; the streetscape. The pressures of suppressing suburban sprawl have seen housing developments respond by increasing residential density within more centralised city sites. Medium-density housing typologies are often used as urban infill in response to the challenge of accommodating an increasing population. A by-product of these renewed areas is the creation of new open space which serves as the fundamental public space for sociability to develop in communities. Street space should emphasise this public expression by encouraging social exchange and interaction. As a result, a neighbourhood owes its liveliness (or lack thereof) to its streets. The issue of density when applied to the urban housing landscape encompasses two major components: the occupancy of both the private realms, constituting the residential built form, and the public spaces that adjoins them, the streets. STREETSCAPE: dialogues of street + house. Continual transition between the realms of public and private (building and street space) enact active edges, giving way to public stimulation; the opportunity for experiencing other people. The advent of seeing and hearing other people in connection with daily comings and goings encourages social events to evolve, enhancing the notion of neighbourly conduct. Within New Zealand, and specifically in Christchurch as considered here, the compositions of current streetscapes lack the demeanor to really encourage and facilitate the idea of neighbourly interaction and public expression. Here lies the potential for new street design to significantly heighten the interplay of human activity. In response, this research project operates under the notion that the street spaces of urban residential areas are largely underutilised. This lack is particularly evident in the street. Street design should strive to produce spaces which stimulate the public life of residents. There exists a need to reassert eminence of the street as a space for vibrant neighbourhood life. This thesis employs design as a tool for researching and will involve using numerous concept generators to trigger the production of multiple scenarios. These scenarios are to explore the ways in which the streetscapes within medium-density urban communities could respond in the event of (re) development.