Search

found 83 results

Images, eqnz.chch.2010

Column reinforcement exposed under spalled concrete after the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Column reinforcement exposed under spalled concrete after the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Column reinforcement exposed under spalled concrete after the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Column reinforcement exposed under spalled concrete after the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Column reinforcement exposed under spalled concrete after the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Column reinforcement exposed under spalled concrete after the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Column reinforcement exposed under spalled concrete after the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Images, eqnz.chch.2010

Column reinforcement exposed under spalled concrete after the magnitude 7.1 earthquake that struck Christchurch on Saturday 4 September 2010.

Research papers, University of Canterbury Library

Geosynthetic reinforced soil (GRS) walls involve the use of geosynthetic reinforcement (polymer material) within the retained backfill, forming a reinforced soil block where transmission of overturning and sliding forces on the wall to the backfill occurs. Key advantages of GRS systems include the reduced need for large foundations, cost reduction (up to 50%), lower environmental costs, faster construction and significantly improved seismic performance as observed in previous earthquakes. Design methods in New Zealand have not been well established and as a result, GRS structures do not have a uniform level of seismic and static resistance; hence involve different risks of failure. Further research is required to better understand the seismic behaviour of GRS structures to advance design practices. The experimental study of this research involved a series of twelve 1-g shake table tests on reduced-scale (1:5) GRS wall models using the University of Canterbury shake-table. The seismic excitation of the models was unidirectional sinusoidal input motion with a predominant frequency of 5Hz and 10s duration. Seismic excitation of the model commenced at an acceleration amplitude level of 0.1g and was incrementally increased by 0.1g in subsequent excitation levels up to failure (excessive displacement of the wall panel). The wall models were 900mm high with a full-height rigid facing panel and five layers of Microgird reinforcement (reinforcement spacing of 150mm). The wall panel toe was founded on a rigid foundation and was free to slide. The backfill deposit was constructed from dry Albany sand to a backfill relative density, Dr = 85% or 50% through model vibration. The influence of GRS wall parameters such as reinforcement length and layout, backfill density and application of a 3kPa surcharge on the backfill surface was investigated in the testing sequence. Through extensive instrumentation of the wall models, the wall facing displacements, backfill accelerations, earth pressures and reinforcement loads were recorded at the varying levels of model excitation. Additionally, backfill deformation was also measured through high-speed imaging and Geotechnical Particle Image Velocimetry (GeoPIV) analysis. The GeoPIV analysis enabled the identification of the evolution of shear strains and volumetric strains within the backfill at low strain levels before failure of the wall thus allowing interpretations to be made regarding the strain development and shear band progression within the retained backfill. Rotation about the wall toe was the predominant failure mechanism in all excitation level with sliding only significant in the last two excitation levels, resulting in a bi-linear displacement acceleration curve. An increase in acceleration amplification with increasing excitation was observed with amplification factors of up to 1.5 recorded. Maximum seismic and static horizontal earth pressures were recorded at failure and were recorded at the wall toe. The highest reinforcement load was recorded at the lowest (deepest in the backfill) reinforcement layer with a decrease in peak load observed at failure, possibly due to pullout failure of the reinforcement layer. Conversely, peak reinforcement load was recorded at failure for the top reinforcement layer. The staggered reinforcement models exhibited greater wall stability than the uniform reinforcement models of L/H=0.75. However, similar critical accelerations were determined for the two wall models due to the coarseness of excitation level increments of 0.1g. The extended top reinforcements were found to restrict the rotational component of displacement and prevented the development of a preliminary shear band at the middle reinforcement layer, contributing positively to wall stability. Lower acceleration amplification factors were determined for the longer uniform reinforcement length models due to reduced model deformation. A greater distribution of reinforcement load towards the top two extended reinforcement layers was also observed in the staggered wall models. An increase in model backfill density was observed to result in greater wall stability than an increase in uniform reinforcement length. Greater acceleration amplification was observed in looser backfill models due to their lower model stiffness. Due to greater confinement of the reinforcement layers, greater reinforcement loads were developed in higher density wall models with less wall movement required to engage the reinforcement layers and mobilise their resistance. The application of surcharge on the backfill was observed to initially increase the wall stability due to greater normal stresses within the backfill but at greater excitation levels, the surcharge contribution to wall destabilising inertial forces outweighs its contribution to wall stability. As a result, no clear influence of surcharge on the critical acceleration of the wall models was observed. Lower acceleration amplification factors were observed for the surcharged models as the surcharge acts as a damper during excitation. The application of the surcharge also increases the magnitude of reinforcement load developed due to greater confinement and increased wall destabilising forces. The rotation of the wall panel resulted in the progressive development of shears surface with depth that extended from the backfill surface to the ends of the reinforcement (edge of the reinforced soil block). The resultant failure plane would have extended from the backfill surface to the lowest reinforcement layer before developing at the toe of the wall, forming a two-wedge failure mechanism. This is confirmed by development of failure planes at the lowest reinforcement layer (deepest with the backfill) and at the wall toe observed at the critical acceleration level. Key observations of the effect of different wall parameters from the GeoPIV results are found to be in good agreement with conclusions developed from the other forms of instrumentation. Further research is required to achieve the goal of developing seismic guidelines for GRS walls in geotechnical structures in New Zealand. This includes developing and testing wall models with a different facing type (segmental or wrap-around facing), load cell instrumentation of all reinforcement layers, dynamic loading on the wall panel and the use of local soils as the backfill material. Lastly, the limitations of the experimental procedure and wall models should be understood.

Research papers, The University of Auckland Library

During the 2010/2011 Canterbury earthquakes, several reinforced concrete (RC) walls in multi-storey buildings formed a single crack in the plastic hinge region as opposed to distributed cracking. In several cases the crack width that was required to accommodate the inelastic displacement of the building resulted in fracture of the vertical reinforcing steel. This type of failure is characteristic of RC members with low reinforcement contents, where the area of reinforcing steel is insufficient to develop the tension force required to form secondary cracks in the surrounding concrete. The minimum vertical reinforcement in RC walls was increased in NZS 3101:2006 with the equation for the minimum vertical reinforcement in beams also adopted for walls, despite differences in reinforcement arrangement and loading. A series of moment-curvature analyses were conducted for an example RC wall based on the Gallery Apartments building in Christchurch. The analysis results indicated that even when the NZS 3101:2006 minimum vertical reinforcement limit was satisfied for a known concrete strength, the wall was still susceptible to sudden failure unless a significant axial load was applied. Additionally, current equations for minimum reinforcement based on a sectional analysis approach do not adequately address the issues related to crack control and distribution of inelastic deformations in ductile walls.

Images, UC QuakeStudies

The old Railway Station clock tower on Moorhouse Avenue with plywood and steel reinforcement covering two sides, a crane hanging over top. The brickwork suffered extensive cracking during the earthquake making it in need for reinforcement. The clock has stopped at around 16:35, the time of the earthquake.

Images, UC QuakeStudies

The old Railway Station clock tower on Moorhouse Avenue with plywood and steel reinforcement covering two sides, and a crane hanging over top. The brickwork suffered extensive cracking during the earthquake making it in need of reinforcement. The clock has stopped at around 16:35, the time of the earthquake.

Images, UC QuakeStudies

The old Railway Station clock tower on Moorhouse Avenue with plywood and steel reinforcement covering two sides, and a crane hanging over top. The brickwork suffered extensive cracking during the earthquake making it in need of reinforcement. The clock has stopped at around 16:35, the time of the earthquake.

Images, UC QuakeStudies

A photograph of a pile of twisted steel reinforcement and other rubble at the entrance to the Smiths City car park on Dundas Street. In the background a section of the collapsed car park has not been demolished yet. Many cars are still parked on the top floor.

Images, UC QuakeStudies

Two workers inspect fuses placed in an embankment during reinforcement work. The photographer comments, "This is the reinforcing of an embankment in the port of Lyttelton, which partly collapsed in the Christchurch earthquakes. They are using the same equipment as used for blowing up rock faces to mend them".

Images, UC QuakeStudies

A photograph of the earthquake damage to the concrete beams in a room in the PricewaterhouseCoopers Building. Sections of the concrete have crumbled to reveal the steel reinforcement underneath. A number of the ceiling panels are missing and another is hanging loose. Some of the bars that hold the ceiling panels are also hanging loose.

Images, UC QuakeStudies

A photograph of the partially-demolished Smiths City car park, taken from Dundas Street. The front section of the car park has mostly been cleared, though there is still a scattering of rubble and steel reinforcement. The back section has collapsed, but the floors are largely intact, with many cars still parked on the top floor.

Images, UC QuakeStudies

A photograph looking east down Dundas Street. Piles of twisted steel reinforcement have been placed on both sides of the street. Several earthquake-damaged cars, recovered from the Smiths City car park, have been stacked on the left. On the other side of the street is an excavator grapple and bucket. In the distance two excavators are sorting through the rubble.