Search

found 12 results

Images, UC QuakeStudies

A photograph of Siobhan Murphy's house at 436 Oxford Terrace. The front walls has been covered with plastic sheeting. A bow made out of curtains has been pinned to the plastic where the fireplace juts out from the wall. The photographer comments, "The bow is a memorial to Murphy's living room and her life in the house".

Images, UC QuakeStudies

A photograph of Siobhan Murphy's house at 436 Oxford Terrace. The front walls has been covered with plastic sheeting. A bow made out of curtains has been pinned to the plastic where the fireplace juts out from the wall. The photographer comments, "The bow is a memorial to Murphy's living room and her life in the house".

Images, UC QuakeStudies

A photograph of Siobhan Murphy outside her house at 436 Oxford Terrace. The front walls of the house have been covered with plastic sheeting. A bow made out of curtains has been pinned to the plastic where the fireplace juts out of the closest wall. The photographer comments, "The bow is a memorial to Murphy's living room and her life in the house".

Images, UC QuakeStudies

A photograph of Siobhan Murphy's house at 436 Oxford Terrace. The photograph was taken from the empty lot next door. The front of the house has been covered with plastic sheeting. Wire fencing has been placed around the outside of the property as a cordon.

Images, UC QuakeStudies

A photograph of a bow made out of curtains pinned to Siobhan Murphy's house at 436 Oxford Terrace. In the background, the house has been covered in plastic sheeting. The photographer comments, "The bow is a memorial to Murphy's living room and her life in the house".

Images, UC QuakeStudies

A photograph of a house at 7 Rees Street. The side of the house has been covered in plastic sheeting. Plywood has been used to board up the door. The number of the house has been spray-painted on the wall next to the door. The letterbox of the house next door also has its house number spray-painted on it.

Research papers, University of Canterbury Library

The capability of self-compacting concrete (SCC) in flowing through and filling in even the most congested areas makes it ideal for being used in congested reinforced concrete (RC) structural members such as beam-column joints (BCJ). However, members of tall multi-storey structures impose high capacity requirements where implementing normal-strength self-compacting concrete is not preferable. In the present study, a commercially reproducible high-strength self-compacting concrete (HSSCC), a conventionally vibrated high-strength concrete (CVHSC) and a normal strength conventionally vibrated concrete (CVC) were designed using locally available materials in Christchurch, New Zealand. Following the guidelines of the New Zealand concrete standards NZS3101, seven beam-column joints (BCJ) were designed. Factors such as the concrete type, grade of reinforcement, amount of joint shear stirrups, axial load, and direction of casting were considered variables. All BCJs were tested under a displacement-controlled quasi-static reversed cyclic regime. The cracking pattern at different load levels and the mode of failure were also recorded. In addition, the load, displacement, drift, ductility, joint shear deformations, and elongation of the plastic hinge zone were also measured during the experiment. It was found that not only none of the seismically important features were compromised by using HSSCC, but also the quality of material and ease of construction boosted the performance of the BCJs.