Case Study: Creating a High Performance Environment, with Intent
Articles, UC QuakeStudies
A document that describes a case study on how SCIRT has been designed to create an environment that delivers high performance.
A document that describes a case study on how SCIRT has been designed to create an environment that delivers high performance.
A document that outlines how timely and accurate information relating to estimating, actual project costs, future commitments, and total forecast cost, will be managed and reported for each project phase in the programme.
An article published in the August/September 2015 issue of BRANZ Build magazine. It summarises SCIRT's approach to innovation management and suggests some areas for improvement.
A paper delivered at Building a Better New Zealand (BBNZ 2014) Conference. The paper examines the relationship between innovation and productivity improvement in the construction industry.
A final year paper prepared by University of Canterbury students examining the positive effects of SCIRT on the New Zealand construction industry's health and safety performance.
Unrestrained unreinforced clay brick masonry (URM) parapets are found atop a large number of vintage URM buildings. Parapets are typically non-structural cantilevered wall elements that form a fire barrier and in most cases form decorative and ornamental features of vintage URM buildings. Parapets are considered to be one of the most vulnerable elements that are prone to out-of-plane collapse when subjected to earthquake induced shaking. An in-depth analysis of the damage database collected following the 2010/2011 Canterbury earthquakes was performed to obtain information about the distribution, characteristics and observed performance of both the as-built and retrofitted parapets in the Christchurch region. Results, statistical interpretation and implications are presented herein. http://www.aees.org.au/downloads/conference-papers/2015-2/
Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/