Phil Holdstock, a homeowner; Leanne Curtis, relationships manager for the Canterbury Communities' Earthquake Recovery Network, a network of residents association and community group representatives from the earthquake-affected neighbourhoods of Canterbury; and Jeremy Johnson, insurance partner at Wynn Williams in Christchurch.
In the aftermath of the 2010 and 2011 earthquakes, Christchurch, New Zealand is framed as a ‘transi- tional’ city, moving from its demolished past to a speculative future. The ADA Mesh Cities project asks what role media art and networks may play in the transitional city, and the practices of remembering, and reimagining space.
Overview of the Presentation Jarg: • The seismic context & liquefaction Tom: • Potable Water Supply • Waste Water Network
The paper proposes a simple method for quick post-earthquake assessment of damage and condition of a stock of bridges in a transportation network using seismic data recorded by a strong motion array. The first part of the paper is concerned with using existing free field strong motion recorders to predict peak ground acceleration (PGA) at an arbitrary bridge site. Two methods are developed using artificial neural networks (a single network and a committee of neural networks) considering influential parameters, such as seismic magnitude, hypocentral depth and epicentral distance. The efficiency of the proposed method is explored using actual strong motion records from the devastating 2010 Darfield and 2011 Christchurch earthquakes in New Zealand. In the second part, two simple ideas are outlined how to infer the likely damage to a bridge using either the predicted PGA and seismic design spectrum, or a broader set of seismic metrics, structural parameters and damage indices.
The magnitude 6.2 Christchurch earthquake struck the city of Christchurch at 12:51pm on February 22, 2011. The earthquake caused 186 fatalities, a large number of injuries, and resulted in widespread damage to the built environment, including significant disruption to lifeline networks and health care facilities. Critical facilities, such as public and private hospitals, government, non-government and private emergency services, physicians’ offices, clinics and others were severely impacted by this seismic event. Despite these challenges many systems were able to adapt and cope. This thesis presents the physical and functional impact of the Christchurch earthquake on the regional public healthcare system by analysing how it adapted to respond to the emergency and continued to provide health services. Firstly, it assesses the seismic performance of the facilities, mechanical and medical equipment, building contents, internal services and back-up resources. Secondly, it investigates the reduction of functionality for clinical and non-clinical services, induced by the structural and non-structural damage. Thirdly it assesses the impact on single facilities and the redundancy of the health system as a whole following damage to the road, power, water, and wastewater networks. Finally, it assesses the healthcare network's ability to operate under reduced and surged conditions. The effectiveness of a variety of seismic vulnerability preparedness and reduction methods are critically reviewed by comparing the observed performances with the predicted outcomes of the seismic vulnerability and disaster preparedness models. Original methodology is proposed in the thesis which was generated by adapting and building on existing methods. The methodology can be used to predict the geographical distribution of functional loss, the residual capacity and the patient transfer travel time for hospital networks following earthquakes. The methodology is used to define the factors which contributed to the overall resilence of the Canterbury hospital network and the areas which decreased the resilence. The results show that the factors which contributed to the resilence, as well as the factors which caused damage and functionality loss were difficult to foresee and plan for. The non-structural damage to utilities and suspended ceilings was far more disruptive to the provision of healthcare than the minor structural damage to buildings. The physical damage to the healthcare network reduced the capacity, which has further strained a health care system already under pressure. Providing the already high rate of occupancy prior to the Christchurch earthquake the Canterbury healthcare network has still provided adequate healthcare to the community.
Quick and reliable assessment of the condition of bridges in a transportation network after an earthquake can greatly assist immediate post-disaster response and long-term recovery. However, experience shows that available resources, such as qualified inspectors and engineers, will typically be stretched for such tasks. Structural health monitoring (SHM) systems can therefore make a real difference in this context. SHM, however, needs to be deployed in a strategic manner and integrated into the overall disaster response plans and actions to maximize its benefits. This study presents, in its first part, a framework of how this can be achieved. Since it will not be feasible, or indeed necessary, to use SHM on every bridge, it is necessary to prioritize bridges within individual networks for SHM deployment. A methodology for such prioritization based on structural and geotechnical seismic risks affecting bridges and their importance within a network is proposed in the second part. An example using the methodology application to selected bridges in the medium-sized transportation network of Wellington, New Zealand is provided. The third part of the paper is concerned with using monitoring data for quick assessment of bridge condition and damage after an earthquake. Depending on the bridge risk profile, it is envisaged that data will be obtained from either local or national seismic monitoring arrays or SHM systems installed on bridges. A method using artificial neural networks is proposed for using data from a seismic array to infer key ground motion parameters at an arbitrary bridges site. The methodology is applied to seismic data collected in Christchurch, New Zealand. Finally, how such ground motion parameters can be used in bridge damage and condition assessment is outlined. AM - Accepted manuscript
A copy of the CanCERN online newsletter published on 31 May 2013
A copy of the CanCERN online newsletter published on 7 June 2013
A copy of the CanCERN online newsletter published on 21 June 2013
A copy of the CanCERN online newsletter published on 3 May 2013
A copy of the CanCERN online newsletter published on 10 May 2013
A copy of the CanCERN online newsletter published on 17 May 2013
A copy of the CanCERN online newsletter published on 14 June 2013
A copy of the CanCERN online newsletter published on 5 July 2013
A copy of the CanCERN online newsletter published on 12 July 2013
A copy of the CanCERN online newsletter published on 19 July 2013
A copy of the CanCERN online newsletter published on 16 August 2013
A copy of the CanCERN online newsletter published on 23 August 2013
A copy of the CanCERN online newsletter published on 30 August 2013
A copy of the CanCERN online newsletter published on 9 August 2013
A copy of the CanCERN online newsletter published on 2 August 2013
A copy of the CanCERN online newsletter published on 24 May 2013
A copy of the CanCERN online newsletter published on 26 April 2013
A copy of the CanCERN online newsletter published on 26 July 2013
A copy of the CanCERN online newsletter published on 1 March 2013
A copy of the CanCERN online newsletter published on 15 February 2013
A copy of the CanCERN online newsletter published on 8 February 2013
A copy of the CanCERN online newsletter published on 19 April 2013
A copy of the CanCERN online newsletter published on 5 April 2013
A copy of the CanCERN online newsletter published on 1 February 2013