Search

found 115 results

Images, eqnz.chch.2010

Messages strung on rope by the Peace Bell at the Christchurch Botanic Gardens in commemoration of the anniversary of the 22 February 2011 earthquake. File reference: CCL-2014-02-22-22February2014 DSC_1217.JPG Photo taken by Valerie Livingstone. From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Flowers left under the Peace Bell at the Christchurch Botanic Gardens in commemoration of the anniversary of the 22 February 2011 earthquake. File reference: CCL-2014-02-22-22February2014 DSC_1214.JPG Photo taken by Valerie Livingstone. From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Messages strung on rope by the Peace Bell at the Christchurch Botanic Gardens in commemoration of the anniversary of the 22 February 2011 earthquake. File reference: CCL-2014-02-22-22February2014 DSC_1218.JPG Photo taken by Valerie Livingstone. From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Flowers left under the Peace Bell at the Christchurch Botanic Gardens in commemoration of the anniversary of the 22 February 2011 earthquake. File reference: CCL-2014-02-22-22February2014 DSC_1215.JPG Photo taken by Valerie Livingstone. From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Messages strung on rope by the Peace Bell at the Christchurch Botanic Gardens in commemoration of the anniversary of the 22 February 2011 earthquake. File reference: CCL-2014-02-22-22February2014 DSC_1216.JPG Photo taken by Valerie Livingstone. From the collection of Christchurch City Libraries.

Research papers, The University of Auckland Library

Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand – Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in Japan have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a very wide extent of urban areas unseen in past destructive earthquakes. While soil liquefaction occurred in naturally-sedimented soil formations in Christchurch, most of the areas which liquefied in Tokyo Bay area were reclaimed soil and artificial fill deposits, thus providing researchers with a wide range of soil deposits to characterize soil and site response to large-scale earthquake shaking. Although these earthquakes in New Zealand and Japan caused extensive damage to life and property, they also serve as an opportunity to understand better the response of soil and building foundations to such large-scale earthquake shaking. With the wealth of information obtained in the aftermath of both earthquakes, information-sharing and knowledge-exchange are vital in arriving at liquefaction-proof urban areas in both countries. Data regarding the observed damage to residential houses as well as the lessons learnt are essential for the rebuilding efforts in the coming years and in mitigating buildings located in regions with high liquefaction potential. As part of the MBIE-JSPS collaborative research programme, the Geomechanics Group of the University of Auckland and the Geotechnical Engineering Laboratory of the University of Tokyo co-hosted the workshop to bring together researchers to review the findings and observations from recent large-scale earthquakes related to soil liquefaction and discuss possible measures to mitigate future damage. http://librarysearch.auckland.ac.nz/UOA2_A:Combined_Local:uoa_alma21151785130002091

Research papers, The University of Auckland Library

The progressive damage and subsequent demolition of unreinforced masonry (URM) buildings arising from the Canterbury earthquake sequence is reported. A dataset was compiled of all URM buildings located within the Christchurch CBD, including information on location, building characteristics, and damage levels after each major earthquake in this sequence. A general description of the overall damage and the hazard to both building occupants and to nearby pedestrians due to debris falling from URM buildings is presented with several case study buildings used to describe the accumulation of damage over the earthquake sequence. The benefit of seismic improvement techniques that had been installed to URM buildings is shown by the reduced damage ratios reported for increased levels of retrofit. Demolition statistics for URM buildings in the Christchurch CBD are also reported and discussed. VoR - Version of Record

Research papers, The University of Auckland Library

The 2011, 6.3 magnitude Christchurch earthquake in New Zealand caused considerable structural damage. It is believed that this event has now resulted in demolition of about 65-70% of the building stock in the Central Business District (CBD), significantly crippling economic activities in the city of Christchurch. A major concern raised from this event was adequacy of the current seismic design practice adopted for reinforced concrete walls due to their poor performance in modern buildings. The relatively short-duration earthquake motion implied that the observed wall damage occurred in a brittle manner despite adopting a ductile design philosophy. This paper presents the lessons learned from the observed wall damage in the context of current state of knowledge in the following areas: concentrating longitudinal reinforcement in wall end regions; determining wall thickness to prevent out-of-plane wall buckling; avoiding lap splices in plastic hinge zones; and quantifying minimum vertical reinforcement. http://www.2eceesistanbul.org/

Research papers, Lincoln University

Indigenous Peoples retain traditional coping strategies for disasters despite the marginalisation of many Indigenous communities. This article describes the response of Māori to the Christchurch earthquakes of 2010 and 2012 through analyses of available statistical data and reports, and interviews done three months and one year after the most damaging event. A significant difference between Māori and ‘mainstream’ New Zealand was the greater mobility enacted by Māori throughout this period, with organisations having roles beyond their traditional catchments throughout the disaster, including important support for non-Māori. Informed engagement with Indigenous communities, acknowledging their internal diversity and culturally nuanced support networks, would enable more efficient disaster responses in many countries.

Images, eqnz.chch.2010

Working at getting things out of the Victoria Square before it is demolished. www.stuff.co.nz/the-press/news/christchurch-earthquake-20... What I found on my walk around the city January 15, 2014 Ch...