Search

found 39 results

Videos, UC QuakeStudies

A video of students at Banks Avenue School participating in the nationwide ShakeOut earthquake drill. The ShakeOut earthquake drill was held on 29 September 2012 to help people prepare for an earthquake. More than 1.3 million New Zealanders participated in 2012.

Images, Canterbury Museum

Eight white corflute boxes of sediment samples from the borehole drilled adjacent to the Canterbury Museum Rolleston Avenue facade following the 22 February 2011 earthquake. Project number 52160, Bore hole BH02 These sediment samples are from machine drilled borings taken from the land near the Rolleston Avenue facade of Canterbury Museum. The ...

Images, UC QuakeStudies

Workers operate a drilling rig, sampling soil as part of EQC's geotechnical investigation of TC3 land. The photographer comments, "The work of getting 'soil' samples from all the areas marked as green/blue zones in Christchurch. These areas may be susceptible to liquefaction if a major earthquake occurs. The soil samples were a failure as all they found was sand".

Audio, Radio New Zealand

Liam takes a work trip to Christchurch. Iris gets a part-time job but before she can start she gets a call from the school about Billy's reaction to an earthquake drill.

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Hold Tight: Lauren Kys, Isla Redgrave and Isla Nelson, all aged four, hide under the desk during an earthquake drill at the Terrace Kindergarten in Alexandra yesterday. The kindergarten had a dress up day to raise funds for Christchurch kindergartens affected by earthquakes".

Images, UC QuakeStudies

Workers operate a drilling rig inside a Terra Probe truck, which has been raised on jacks to make it stable. The photographer comments, "Another completely different company testing what is below the surface to determine what type of foundations new houses will need. This is in one the blue/green area of earthquake shaken Christchurch. Strangely this is 3 metres away from where the other testing was done".

Images, UC QuakeStudies

Two workers inspect fuses placed in an embankment during reinforcement work. The photographer comments, "This is the reinforcing of an embankment in the port of Lyttelton, which partly collapsed in the Christchurch earthquakes. They are using the same equipment as used for blowing up rock faces to mend them".

Audio, Radio New Zealand

Iwi from Northland, Bay of Plenty, the East Coast and Taranaki are joining a pan-tribal hui against new oil drilling and mining; Marae and Maori families around the country are opening their doors to Canterbury earthquake victims who have also suffered from domestic violence; The lead agency for Whanau Ora in Whangarei says it could do with a few more Nannies-on-Wheels.

Research papers, University of Canterbury Library

Liquefaction is a phenomenon that results in a loss of strength and stability of a saturated soil mass due to dynamic excitation such as that imposed by an earthquake. The granular nature of New Zealand soils and the location of many of our cities and towns on fluvial foundations are such that the effects of liquefaction can be very important. Research was undertaken to build on the past work undertaken at the University of Canterbury studying the effects of the 1929 Murchison earthquake, the 1968 Inangahua earthquake and the 1991 Hawks Crag earthquakes on the West Coast. Additional archival information has been gathered from newspapers and reports and from discussions with people who experienced one or all of these large earthquakes that occurred on the West Coast during the 20th Century. Further, some twenty Cone Penetrometer Tests were carried out, with varying success, in Greymouth and Karamea using the Department of Civil Engineering's Drilling Rig. These, combined with the basic site investigation information, consolidate and add to the liquefaction case history data bank at the University of Canterbury. Many of the sites have liquefied in some but not all of the three earthquakes and thus provide both upper and lower bounds for the calibration of empirical models. While a lack of knowledge of the 1929 source location reduces the value of information from that event, the data form a useful set of liquefaction case histories and will become more so as further earthquakes occur. A list of critical sites for checking of the future earthquakes is provided and recommendations are made for the installation of downhole arrays of accelerometers and pore water pressure transducers at a number of sites.

Audio, Radio New Zealand

Several iwi are joining a pan-tribal hui against new oil drilling and mining; The body of the former Maori Women's Welfare League national president, Meagan Joe, will be moved from a Napier marae to another in Mohaka in northern Hawkes Bay later today; Marae and Maori families around the country are opening their doors to Canterbury earthquake victims who have also suffered from domestic violence; The lead agency for Whanau Ora in Whangarei says it could use a few more Nannies on Wheels.

Research papers, University of Canterbury Library

The magnitude Mw 6.2 earthquake of February 22nd 2011 that struck beneath the city of Christchurch, New Zealand, caused widespread damage and was particularly destructive to the Central Business District (CBD). The shaking caused major damage, including collapses of structures, and initiated ground failure in the form of soil liquefaction and consequent effects such as sand boils, surface flooding, large differential settlements of buildings and lateral spreading of ground towards rivers were observed. A research project underway at the University of Canterbury to characterise the engineering behaviour of the soils in the region was influenced by this event to focus on the performance of the highly variable ground conditions in the CBD. This paper outlines the methodology of this research to characterise the key soil horizons that underlie the CBD that influenced the performance of important structures during the recent earthquakes, and will influence the performance of the rebuilt city centre under future events. The methodology follows post-earthquake reconnaissance in the central city, a desk study on ground conditions, site selection, mobilisation of a post-earthquake ground investigation incorporating the cone penetration test (CPT), borehole drilling, shear wave velocity profiling and Gel-push sampling followed by a programme of laboratory testing including monotonic and cyclic testing of the soils obtained in the investigation. The research is timely and aims to inform the impending rebuild, with appropriate information on the soils response to dynamic loading, and the influence this has on the performance of structures with various foundation forms.

Research papers, University of Canterbury Library

Following the Mw 6.2 Christchurch Earthquake on 22 February 2011, extensive ground cracking in loessial soils was reported in some areas of the Port Hills, southeast of central Christchurch. This study was undertaken to investigate the mechanisms of earthquake-induced ground damage on the eastern side of the Hillsborough Valley. A zone of extensional cracking up to 40m wide and 600m long was identified along the eastern foot-slope, accompanied by compression features and spring formation at the toe of the slope. An engineering geological and geomorphological model was developed for the eastern Hillsborough Valley that incorporates geotechnical investigation data sourced from the Canterbury Geotechnical Database (CGD), the findings of trenching and seismic refraction surveying carried out for this research, and interpretation of historical aerial photographs. The thickness and extent of a buried peat swamp at the base of the slope was mapped, and found to coincide with significant compression features. Ground cracking was found to have occurred entirely within loess-colluvium and to follow the apices of pre-1920s tunnel-gully fan debris at the southern end of the valley. The ground-cracking on the eastern side of the Hillsborough Valley is interpreted to have formed through tensile failure of the loess-colluvium. Testing was carried out to determine the tensile strength of Port Hills loess colluvium as a function of water content and density, in order to better understand the occurrence and distribution of the observed ground cracking. A comprehensive review of the soil tensile strength testing literature was undertaken, from which a test methodology was developed. Results show remoulded loess-colluvium to possess tensile strength of 7 - 28 kPa across the range of tested moisture contents (10-15%) and dry densities (1650-1900kg/m3). A positive linear relationship was observed between tensile strength and dry density, and a negative linear relationship between moisture content and tensile strength. The observed ground damage and available geotechnical information (inclinometer and piezometer records provided by the Earthquake Commission) were together used to interpret the mechanism(s) of slope movement that occurred in the eastern Hillsborough Valley. The observed ground damage is characteristic of translational movement, but without the development of lateral release scarps, or a basal sliding surface - which was not located during drilling. It is hypothesised that shear displacement has been accommodated by multiple slip surfaces of limited extent within the upper 10m of the slope. Movement has likely occurred within near-saturated colluvial units that have lost strength during earthquake shaking. The eastern Hillsborough Valley is considered to be an ‘incipient translational slide’, as both the patterns of damage and shearing are consistent with the early stages of such slide development. Sliding block analysis was utilised to understand how the eastern Hillsborough Valley may perform in a future large magnitude earthquake. Known cumulative displacements of ~0.3m for eastern Hillsborough Valley during the 2010-2011 Canterbury Earthquake Sequence were compared with modelled slope displacements to back-analyse a lower-bound yield acceleration of 0.2 - 0.25g. Synthetic broadband modelling for future Alpine and Hope Fault earthquakes indicates PGAs of approximately 0.08g for soil sites in the Christchurch area, as such, slope movement is unlikely to be reactivated by an Alpine Fault or Hope Fault earthquake. This does not take into account the possible role of strength loss due to excess pore pressure that may occur during these future events.

Audio, Radio New Zealand

Questions to Ministers 1. Hon PHIL GOFF to the Prime Minister: Does he have confidence in all his Ministers? 2. METIRIA TUREI to the Acting Minister of Energy and Resources: What emergency response, safety, and environmental protection provisions, if any, were included in the permit granted to Anadarko Petroleum Corporation to undertake deepwater oil exploration and drilling in the Canterbury Basin? 3. SIMON BRIDGES to the Minister of Finance: What signs are there that New Zealanders are saving more? 4. GRANT ROBERTSON to the Prime Minister: Does he have confidence in his Minister of Health? 5. JOHN HAYES to the Minister for Communications and Information Technology: What benefit will rural communities receive from the Rural Broadband Initiative signed last month? 6. SUE MORONEY to the Prime Minister: Does he have confidence in his Minister of Education? 7. MELISSA LEE to the Minister of Corrections: How are Corrections Department staff showing support for their Christchurch colleagues following the earthquake? 8. DAVID SHEARER to the Minister of Defence: Does he agree with all of the statements made by the Minister of Foreign Affairs on that Minister's use of RNZAF aircraft to travel to Vanuatu in February of this year? 9. KANWALJIT SINGH BAKSHI to the Minister of Customs: What recent reports has he received on the success of SmartGate? 10. CLARE CURRAN to the Prime Minister: Does he have confidence in the Minister for Communications and Information Technology? 11. KEITH LOCKE to the Minister of Defence: Did the New Zealand Defence Force, when preparing their response dated 2 May 2011, talk to any of the Afghan civilians interviewed by Jon Stephenson in the Metro article "Eyes Wide Shut" and seen on the subsequent 60 Minutes TV special; if so, who? 12. HONE HARAWIRA to the Acting Minister of Energy and Resources: Does the survey and drilling arrangement between the Government and Petrobras have the prior and informed consent of Te-Whanau-a-Apanui; if not, will this lack of consent breach the United Nations Declaration on the Rights of Indigenous Peoples?