Search

found 39 results

Images, Alexander Turnbull Library

The cartoon shows the 'CCC Office' (Christchurch City Council) as a small ramshackle wooden building in a desert; bits of animal skeleton lie around and there are saguaro cactus and tumbleweed. A cowboy has arrived and asks 'So... Can I speak to the Deputy, Deputy, Deputy, Assistant Sheriff?' Context - A reference to layers of officialdom in Christchurch as the city struggles to rebuild itself as well as many councillors being away on holiday while the quake problems continue. Quantity: 1 digital cartoon(s).

Images, UC QuakeStudies

Dried liquefaction in North New Brighton. The photographer comments, "This shape formed as the liquefaction after the 23 December earthquake in Christchurch started to dry out".

Images, UC QuakeStudies

Dried liquefaction silt in North New Brighton. The photographer comments, "The liquefaction after the 23 December earthquake in Christchurch started to dry out and the thicker deposits started to curl up like broken drain pipe".

Images, UC QuakeStudies

Dried liquefaction silt in North New Brighton. The photographer comments, "The day before this was liquefaction pouring out of the ground, but within a day it has dried up and will soon turn into a gritty dust".

Images, UC QuakeStudies

Dried liquefaction silt in North New Brighton. The photographer comments, "This is the the top layer of liquefaction that has dried up in the hot sun. A broken eggshell is around 5 times stronger than these, but a fallen leaf is just not enough to break one. You can see underneath that the heavier sandy layer of liquefaction has dried and has cracked as well".

Images, UC QuakeStudies

Dried liquefaction silt in North New Brighton. The photographer comments, "This is the result of liquefaction which spewed out after the double earthquake in Christchurch. Having flowed into a shallow depression that was deep enough for a fair quantity of the silty liquid to settle and separate: the heavy sand below and a talcum powder like substance on top. Some of these are so delicate that a mouse crossing them would probably crack them. Here the sun has dried them out and they have contracted and curled up towards their centres".

Images, UC QuakeStudies

The dried up bottom of an empty pond in Hagley Park. The photographer comments, "The earthquakes in Christchurch ruptured some of the ponds and lakes of Hagley Park".

Images, UC QuakeStudies

A laminated sign for the 2011 Festival of Flowers attached to a wooden planter. The plants in the planter are dry and dead. The photographer comments, "The theme for the 2011 Festival of Flowers was 'burst! of water'. The Christchurch February earthquake came and water and sand called liquefaction burst out of the ground all around the area. Ironically the plants for the festival were left unattended in the cordoned off red zone and they would have loved a little burst of water".

Images, UC QuakeStudies

Dried liquefaction silt in North New Brighton. The photographer comments, "Here you can see the very fine surface layer of liquefaction starting to shrink, crack and then curl up on itself".

Images, UC QuakeStudies

Dried liquefaction silt in North New Brighton. The photographer comments, "I found this face amongst the liquefaction. It is like one of them diagrams where they segment different parts of the brain depending on their functions".

Images, UC QuakeStudies

Liquefaction and flooding in Waitaki Street, Bexley. The photographer comments, "Waitaki Street a week after the Christchurch Earthquake. Because of the damage to the drains and liquefaction in the area the streets are not drying out".

Images, UC QuakeStudies

A digitally manipulated photograph of twisted reinforcing rods amongst the rubble from the demolition of QEII. The photographer comments, "These rarely seen worms live in the pressurised earth under the foundations of buildings. They need a damp soil and be under at least 100 pounds of pressure per square inch. After the destructive force of an earthquake they swiftly rise to the surface through gaps in the rubble. Unfortunately they quickly die and then crystallise as hard as iron in the dry low pressure air".

Research papers, University of Canterbury Library

Based on the recent developments on alternative jointed ductile dry connections for concrete multistorey buildings, the paper aims to extend and propose similar innovative seismic connections for laminated veneer lumber (LVL) timber buildings. The dry connections herein proposed are characterised by a sort of rocking occurring at the section interface of the structural elements when an earthquake occurs; unbonded post-tensioned techniques and dissipative devices respectively provide self-centring and dissipation capacities. The paper illustrates some experimental investigations of an extensive campaign, still undergoing at the University of Canterbury Christchurch, NZ) are herein presented and critically discussed. In particular, results of cyclic quasi-static testing on exterior beam-column subassemblies and wall-to-foundation systems are herein presented; preliminary results of pseudo-dynamic testing on wall-to-foundation specimens are also illustrated. The research investigations confirmed the enhanced seismic performance of these systems/connections; three key aspects , as the no-damageability in the structural elements, typical “flag-shape” cyclic behaviour (with self-centring and dissipation capacity), negligible residual deformations, i.e. limited costs of repair, joined with low mass, flexibility of design and rapidity of construction LVL timber, all create the potential for an increased use in low-rise multistorey buildings.

Images, UC QuakeStudies

A digitally manipulated image of printer's type, spelling out "Safe Dust". The photographer comments, "After the September 2010 Christchurch earthquake liquefaction poured out of the ground mostly in the East of Christchurch. This silt, which was a form of sand was declared safe and would not harm gardens if it was spread around in moderation. After the February 2011 quake as a result of even more liquefaction and the sewers being ruptured, the liquefaction was declared as toxic. People clearing it up should wear a mask, boots and gloves especially when it had dried up and become dusty. This just so happens to be the words found on an old printing press".

Images, Alexander Turnbull Library

A ship named 'NZ Ship of State' lies high and dry on rocks; the great jagged holes in her represent 'the recession', 'Pike River', 'Chch 1' and 'Chch 2'. A man standing nearby asks 'How will we refloat her?' and a second man answers '...by cutting Working for Families & interest-free student loans' Someone outside the frame says 'Where's the No. 8 wire?' Context - The New Zealand economy was stagnating before the impact of the Christchurch earthquakes of 4 September 2010 and 22 February 2011 and the Pike River Mine disaster before that. The government was already considering cutting Working for Families & interest-free student loans before the earthquakes struck and it seems that now they are trying to push through these policy changes using the earthquakes as an excuse. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The majority of Christchurch’s stormwater has historically been discharged untreated directly into urban surface waterways. These receiving waterways have become adversely affected by the contaminants carried in the stormwater, particularly sediment and heavy metals. An event-based contaminant load model was developed to identify the distribution and magnitude of contaminant loads entering the waterway, as well as to assess the reduction in TSS and heavy metal loads that can be achieved by various stormwater management options. The GIS-Excel based model estimates contaminant loads from an individual storm event based on different contributing impervious surfaces and key rainfall characteristics (rainfall intensity, duration, pH and antecedent dry days). It then calculates contaminant reduction loads that could be achieved through source reduction (e.g. green roofs, repainting) as well as from treatment (e.g. raingardens, wet ponds) applied to different surfaces within the catchment. This model differs from other annual load models as it is event-based and accounts for storm characteristics in its calculation of contaminant loads. Christchurch is a valuable case setting due the unique opportunity for retrofitting improved stormwater management in the post-earthquake rebuild. It is anticipated that this modelling approach could later be adapted for use in other urban settings outside of Christchurch.

Images, Alexander Turnbull Library

Prime Minister John Key stands grinning on a cracked pedestal bearing the words 'Most popular P.M.' In the background is the Beehive flying a skull and crossbones flag. The landscape is a desert with cactus and dried bones and a vulture in a bare tree. A man and a woman comment that it looks as though the quake may have done damage in Wellington after all, that and the crash of the SCF fund. Refers to two major events in the Canterbury area in recent times that have incurred huge government costs; these are the collapse of the South Canterbury Finance Company and the earthquake that struck early Saturday morning 4th September. The South Canterbury Finance Company has been taken into receivership by the government which has guaranteed that all 30,000 fortunate high-risk investors will be paid out $1.6b thanks to the taxpayer. Treasury is assuming that the cost of the earthquake will reach $4 billion, including $2 billion worth of estimated damage to private dwellings and their contents, $1 billion of damage to commercial property, and $1 billion worth of damage to public infrastructure. There is a colour and a black and white version of this cartoon Quantity: 2 digital cartoon(s).

Research papers, University of Canterbury Library

The Canterbury earthquake sequence in New Zealand’s South Island induced widespread liquefaction phenomena across the Christchurch urban area on four occasions (4 Sept 2010; 22 Feb; 13 June; 23 Dec 2011), that resulted in widespread ejection of silt and fine sand. This impacted transport networks as well as infiltrated and contaminated the damaged storm water system, making rapid clean-up an immediate post-earthquake priority. In some places the ejecta was contaminated by raw sewage and was readily remobilised in dry windy conditions, creating a long-term health risk to the population. Thousands of residential properties were inundated with liquefaction ejecta, however residents typically lacked the capacity (time or resources) to clean-up without external assistance. The liquefaction silt clean-up response was co-ordinated by the Christchurch City Council and executed by a network of contractors and volunteer groups, including the ‘Farmy-Army’ and the ‘Student-Army’. The duration of clean-up time of residential properties and the road network was approximately 2 months for each of the 3 main liquefaction inducing earthquakes; despite each event producing different volumes of ejecta. Preliminary cost estimates indicate total clean-up costs will be over NZ$25 million. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill since the beginning of the Canterbury earthquakes sequence. The liquefaction clean-up experience in Christchurch following the 2010-2011 earthquake sequence has emerged as a valuable case study to support further analysis and research on the coordination, management and costs of large volume deposition of fine grained sediment in urban areas.