Search

found 60 results

Videos, UC QuakeStudies

A video of a press conference with Gerry Brownlee announcing a CERA review which will change the zoning of 270 Port Hills properties. Brownlee announces that 247 properties will change from green zoned to red zoned and 33 properties will change from red zoned to green zoned. The properties that have been rezoned red have an unacceptable level of life risk from cliff collapse and the potential of debris inundation.

Videos, UC QuakeStudies

A video of a press conference with Earthquake Recovery Minister Gerry Brownlee and Mayor Lianne Dalziel. The conference was held to announce the implementation of the Accessible Transport Plan. Brownlee announces the introduction of a 30 km/h speed limit in the inner city zone, facilitating the use of bicycles and encouraging pedestrian movement within the centre city. Lianne also talks about how the plan allows for a clean, green, safe, and accessible city, reflecting the public's visions in the Share an Idea campaign.

Videos, UC QuakeStudies

A video of a press conference with Minister of Education Hekia Parata about the Ministry's decisions for secondary schools in Christchurch. Earlier in the day Parata announced that all secondary schools will stay open, and that Avonside Girls' High School and Shirley Boys' High School will share a new site.

Research papers, The University of Auckland Library

The current seismic design practice for reinforced concrete (RC) walls has been drawn into question following the Canterbury earthquakes. An overview of current research being undertaken at the University of Auckland into the seismic behaviour of RC walls is presented. The main objectives of this research project are to understand the observed performance of several walls in Christchurch, quantify the seismic loads on RC walls, and developed improved design procedures for RC walls that will assist in revisions to NZS 3101. A database summarising of the performance of RC wall buildings in the Christchurch CBD was collated to identify damage modes and case-study buildings. A detailed investigation is underway to verify the seismic performance of lightly reinforced concrete walls and an experimental setup has been developed to subject RC wall specimen to loading that is representative of a multi-storey building. Numerical modelling is being used to understand the observed performance of several case-study RC walls buildings in Christchurch. Of particular interest is the influence that interactions between walls and other structural elements have on the seismic response of buildings and the loads generated on RC walls.

Research papers, The University of Auckland Library

During the 2010/2011 Canterbury earthquakes, several reinforced concrete (RC) walls in multi-storey buildings formed a single crack in the plastic hinge region as opposed to distributed cracking. In several cases the crack width that was required to accommodate the inelastic displacement of the building resulted in fracture of the vertical reinforcing steel. This type of failure is characteristic of RC members with low reinforcement contents, where the area of reinforcing steel is insufficient to develop the tension force required to form secondary cracks in the surrounding concrete. The minimum vertical reinforcement in RC walls was increased in NZS 3101:2006 with the equation for the minimum vertical reinforcement in beams also adopted for walls, despite differences in reinforcement arrangement and loading. A series of moment-curvature analyses were conducted for an example RC wall based on the Gallery Apartments building in Christchurch. The analysis results indicated that even when the NZS 3101:2006 minimum vertical reinforcement limit was satisfied for a known concrete strength, the wall was still susceptible to sudden failure unless a significant axial load was applied. Additionally, current equations for minimum reinforcement based on a sectional analysis approach do not adequately address the issues related to crack control and distribution of inelastic deformations in ductile walls.