Search

found 2 results

Research papers, University of Canterbury Library

Research indicates that aside from the disaster itself, the next major source of adverse outcomes during such events, is from errors by either the response leader or organisation. Yet, despite their frequency, challenge, complexity, and the risks involved; situations of extreme context remain one of the least researched areas in the leadership field. This is perhaps surprising. In the 2010 and 2011 (Christchurch) earthquakes alone, 185 people died and rebuild costs are estimated to have been $40b. Add to this the damage and losses annually around the globe arising from natural disasters, major business catastrophes, and military conflict; there is certainly a lot at stake (lives, way of life, and our well-being). While over the years, much has been written on leadership, there is a much smaller subset of articles on leadership in extreme contexts, with the majority of these focusing on the event rather than leadership itself. Where leadership has been the focus, the spotlight has shone on the actions and capabilities of one person - the leader. Leadership, however, is not simply one person, it is a chain or network of people, delivering outcomes with the support of others, guided by a governance structure, contextualised by the environment, and operating on a continuum across time (before, during, and after an event). This particular research is intended to examine the following: • What are the leadership capabilities and systems necessary to deliver more successful outcomes during situations of extreme context; • How does leadership in these circumstances differ from leadership during business as usual conditions; • Lastly, through effective leadership, can we leverage these unfortunate events to thrive, rather than merely survive?

Research papers, The University of Auckland Library

Reinforced concrete (RC) frame buildings designed according to modern design standards achieved life-safety objectives during the Canterbury earthquakes in 2010-11 and the Kaikōura earthquake in 2016. These buildings formed ductile plastic hinges as intended and partial or total building collapse was prevented. However, despite the fact that the damage level of these buildings was relatively low to moderate, over 60% of multi-storey RC buildings in the Christchurch central business district were demolished due to insufficient insurance coverage and significant uncertainty in the residual capacity and repairability of those buildings. This observation emphasized an imperative need to improve understanding in evaluating the post-earthquake performance of earthquake-damaged buildings and to develop relevant post-earthquake assessment guidelines. This thesis focuses on improving the understanding of the residual capacity and repairability of RC frame buildings. A large-scale five-storey RC moment-resisting frame building was tested to investigate the behaviour of earthquake-damaged and repaired buildings. The original test building was tested with four ground motions, including two repeated design-level ground motions. Subsequently, the test building was repaired using epoxy injection and mortar patching and re-tested with three ground motions. The test building was assessed using key concepts of the ATC-145 post-earthquake assessment guideline to validate its assessment procedures and highlight potential limitations. Numerical models were developed to simulate the peak storey drift demand and identify damage locations. Additionally, fatigue assessment of steel reinforcement was conducted using methodologies as per ATC-145. The residual capacity of earthquake-strained steel reinforcement was experimentally investigated in terms of the residual fatigue capacity and the residual ultimate strain capacity. In addition to studying the fatigue capacity of steel reinforcement, the fatigue damage demand was estimated using 972 ground motion records. The deformation limit of RC beams and columns for damage control was explored to achieve a low likelihood of requiring performance-critical repair. A frame component test database was developed, and the deformation capacity at the initiation of lateral strength loss was examined in terms of the chord rotation, plastic rotation and curvature ductility capacity. Furthermore, the proposed curvature ductility capacity was discussed with the current design curvature ductility limits as per NZS 3101:2006.