Search

found 21 results

Images, UC QuakeStudies

A brick building supported by shipping containers on Colombo Street. The side wall of the building has been revealed by the demolition of the adjoining building. Security fences have been placed around the building to restrict access.

Images, UC QuakeStudies

Digitally manipulated image of graffiti on a brick building on St Asaph Street. The graffiti depicts a sticking plaster over a broken section of the wall, with the words "I'll kiss it better". The photographer comments, "After the 22 February 2011 earthquake in Christchurch band aid plasters starting to appear in different parts of the city on damaged buildings. A year later most can still be seen. This one was once a whole plaster, but it has slowly broken up where it crossed the gap. The red bricks seen to symbolise the terrible wounds caused to the City and it's people".

Images, UC QuakeStudies

A damaged brick building on Tuam Street. Bricks have fallen from the wall exposing the interior, where a wooden structure can be seen to have collapsed. The photographer comments, "This is the damage caused by the numerous earthquakes in Christchurch, New Zealand. It closely resembles a face and the round blob in the square hole at the top of the nose is a pigeon".

Images, UC QuakeStudies

A view down Colombo Street. A brick wall has been revealed due to the demolition of the adjoining building. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look of the cathedral.

Images, UC QuakeStudies

A digitally manipulated image of a broken window. The photographer comments, "There is hardly anything left of Christchurch's proud heritage buildings. Most older buildings were made of brick and though they should have had improvements to make them withstand a medium earthquake most did not. They were badly damaged when hit with a series of earthquakes that were up to 2.2g at the epicentre and 1.88g in the City".

Images, eqnz.chch.2010

one of Christchurch's abandoned suburbs. The land moved - bricks and block walls everywhere collapsed - two multi story buildings folded - 184 people died. Wooden framed houses largely stayed up, many concrete slabs cracked, power poles leaned in liquid ground, surface bubbled, services ruptured .... damage to the cbd still gets the most cover...

Research papers, The University of Auckland Library

As part of the ‘Project Masonry’ Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. Also, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake. In addition to presenting a summary of Project Masonry, the broader research activity at the University of Auckland pertaining to the seismic assessment and improvement of unreinforced masonry buildings is outlined. The purpose of this outline is to provide an overview and bibliography of published literature and to communicate on-going research activity that has not yet been reported in a complete form. http://sesoc.org.nz/conference/programme.pdf

Research papers, The University of Auckland Library

Following the Christchurch earthquake of 22 February 2011 a number of researchers were sent to Christchurch, New Zealand to document the damage to masonry buildings as part of “Project Masonry”. Coordinated by the Universities of Auckland and Adelaide, researchers came from Australia, New Zealand, Canada, Italy, Portugal and the US. The types of masonry investigated were unreinforced clay brick masonry, unreinforced stone masonry, reinforced concrete masonry, residential masonry veneer and churches; masonry infill was not part of this study. This paper focuses on the progress of the unreinforced masonry (URM) component of Project Masonry. To date the research team has completed raw data collection on over 600 URM buildings in the Christchurch area. The results from this study will be extremely relevant to Australian cities since URM buildings in New Zealand are similar to those in Australia.

Research papers, The University of Auckland Library

Following the 2010/2011 Canterbury earthquakes a detailed campaign of door to door assessments was conducted in a variety of areas of Christchurch to establish the earthquake performance of residential dwellings having masonry veneer as an external cladding attached to a lightweight timber framing system. Specifically, care was taken to include regions of Christchurch which experienced different levels of earthquake shaking in order to allow comparison between the performance of different systems and different shaking intensities. At the time of the inspections the buildings in the Christchurch region had been repeatedly subjected to large earthquakes, presenting an opportunity for insight into the seismic performance of masonry veneer cladding. In total just under 1100 residential dwellings were inspected throughout the wider Christchurch area, of which 24% were constructed using the older nail-on veneer tie system (prior to 1996) and 76% were constructed using screw fixed ties to comply with the new 1996 standards revision (post-1996), with 30% of all inspected houses being of two storey construction. Of the inspected dwellings 27% had some evidence of liquefaction, ground settlement or lateral spreading. Data such as damage level, damage type, crack widths, level of repair required and other parameters were collected during the survey. A description of the data collection processes and a snapshot of the analysis results are presented within. http://15ibmac.com/home/