Search

found 3 results

Research papers, University of Canterbury Library

A building boom in the 1980s allowed pre-stressed hollow-core floor construction to be widely adopted in New Zealand, even though the behaviour of these prefabricated elements within buildings was still uncertain. Inspections following the Canterbury and Kaikōura earthquakes has provided evidence of web-splitting, transverse cracking and longitudinal splitting on hollow-core units, confirming the susceptibility of these floors to undesirable failure modes. Hollow-core slabs are mainly designed to resist bending and shear. However, there are many applications in which they are also subjected to torsion. In New Zealand, hollow-core units contain no transverse reinforcement in the soffit concrete below the cells and no web reinforcement. Consequently, their dependable performance in torsion is limited to actions that they can resist before torsional cracking occurs. In previous work by the present authors, a three-dimensional FE modelling approach to study the shear flexural behaviour of precast pre-stressed hollow core units was developed and validated by full-scale experiments. This paper shows how the FE analyses have been extended to investigate the response of HC units subjected to torsional actions. Constitutive models, based on nonlinear fracture mechanics, have been used to numerically predict the torsional capacity of HC units and have been compared with experimental results. The results indicate that the numerical approach is promising and should be developed further as part of future research.

Audio, Radio New Zealand

Hon JUDITH COLLINS to the Prime Minister: Does she stand by all her Government’s statements and actions? HELEN WHITE to the Minister of Finance: What recent reports has he seen on the New Zealand economy? Hon PAUL GOLDSMITH to the Minister of Education: Does he stand by all his statements and policies on education? GINNY ANDERSEN to the Minister of Housing: What recent announcements has she made about the Government’s transitional housing programme? NICOLA WILLIS to the Minister of Housing: Has the Government kept the commitment made in the 2017 Speech from the Throne to develop a ‘Rent to Own’ scheme; if so, how many families has the scheme helped into houses since then? ANAHILA KANONGATA'A-SUISUIKI to the Minister for Social Development and Employment: What support has the Ministry of Social Development provided to people and families affected by recent COVID-19 restrictions? NICOLE McKEE to the Minister of Police: Will Government actions reduce gang crime and gang numbers this year? IBRAHIM OMER to the Lead Coordination Minister for the Government's Response to the Royal Commission's Report into the Terrorist Attack on the Christchurch Mosques: What recent engagement has there been with the Muslim and other ethnic communities on the Royal Commission of Inquiry into the terrorist attack on Christchurch masjidain? SIMEON BROWN to the Minister of Police: Does she stand by her commitment to achieve the Striving Towards 1800 New Police initiative; if so, when will she achieve this initiative? TEANAU TUIONO to the Minister for Economic and Regional Development: What advice, if any, has he received about the upcoming launch in New Zealand of a satellite that includes the “Gunsmoke-J” payload from the United States Army’s Space and Missile Defense Command? MARJA LUBECK to the Minister for Workplace Relations and Safety: What recent announcements has he made about improving the Holidays Act 2003? TIM VAN DE MOLEN to the Minister for Building and Construction: How many applications has the Residential Earthquake-Prone Building Financial Assistance Scheme had since its inception in September last year, and how much has been appropriated for the scheme?

Research papers, University of Canterbury Library

Advanced seismic effective-stress analysis is used to scrutinize the liquefaction performance of 55 well-documented case-history sites from Christchurch. The performance of these sites during the 2010-2011 Canterbury earthquake sequence varied significantly, from no liquefaction manifestation at the ground surface (in any of the major events) to severe liquefaction manifestation in multiple events. For the majority of the 55 sites, the simplified liquefaction evaluation procedures, which are conventionally used in engineering practice, could not explain these dramatic differences in the manifestation. Detailed geotechnical characterization and subsequent examination of the soil profile characteristics of the 55 sites identified some similarities but also important differences between sites that manifested liquefaction in the two major events of the sequence (YY-sites) and sites that did not manifest liquefaction in either event (NN-sites). In particular, while the YY-sites and NN-sites are shown to have practically identical critical layer characteristics, they have significant differences with regard to their deposit characteristics including the thickness and vertical continuity of their critical zones and liquefiable materials. A CPT-based effective stress analysis procedure is developed and implemented for the analyses of the 55 case history sites. Key features of this procedure are that, on the one hand, it can be fully automated in a programming environment and, on the other hand, it is directly equivalent (in the definition of cyclic resistance and required input data) to the CPT-based simplified liquefaction evaluation procedures. These features facilitate significantly the application of effective-stress analysis for simple 1D free-field soil-column problems and also provide a basis for rigorous comparisons of the outcomes of effective-stress analyses and simplified procedures. Input motions for the analyses are derived using selected (reference) recordings from the two major events of the 2010-2011 Canterbury earthquake sequence. A step-by-step procedure for the selection of representative reference motions for each site and their subsequent treatment (i.e. deconvolution and scaling) is presented. The focus of the proposed procedure is to address key aspects of spatial variability of ground motion in the near-source region of an earthquake including extended-source effects, path effects, and variation in the deeper regional geology.