The man who heads California's earthquake insurance agency says Christchurch is much better placed to recover from earthquake devastation than his state.
Infrastructure damage in Lyttelton.
Rock falls in redcliffs.
Rock falls in redcliffs.
Rock falls in redcliffs.
New Bridge in Ferrymead.
Infrastructure damage in Lyttelton.
Damaged footpath in Lyttelton.
Infrastructure damage in Lyttelton.
Infrastructure damage in Lyttelton.
Collapse of Shag Rock.
Infrastructure damage in Lyttelton.
A truck dumps rubbish.
Liquefaction flooding in Travis Country.
Earthquake rubbish dump at Bottlelake Forest.
Earthquake rubbish dump at Bottlelake Forest.
Erosion scarp along North New Brighton Beach.
Damaged road around the Avon-Heathcote Estuary.
Erosion scarp along North New Brighton Beach.
Container wall protecting road from rock falls.
Erosion scarp along North New Brighton Beach.
Damaged road around the Avon-Heathcote Estuary.
Container wall protecting road from rock falls.
Container wall protecting road from rock falls.
Container wall protecting road from rock falls.
Damaged road around the Avon-Heathcote Estuary.
Erosion scarp along North New Brighton Beach.
Old damaged bridge in Ferrymead next to the new one.
This paper describes pounding damage sustained by buildings and bridges in the February 2011 Christchurch earthquake. Approximately 6% of buildings in Christchurch CBD were observed to have suffered some form of serious pounding damage. Almost all of this pounding damage occurred in masonry buildings, further highlighting their vulnerability to this phenomenon. Modern buildings were found to be vulnerable to pounding damage where overly stiff and strong ‘flashing’ components were installed in existing building separations. Soil variability is identified as a key aspect that amplifies the relative movement of buildings, and hence increases the likelihood of pounding damage. Pounding damage in bridges was found to be relatively minor and infrequent in the Christchurch earthquake.
Unreinforced masonry (URM) buildings have repeatedly been shown to perform poorly in large magnitude earthquakes, with both New Zealand and Australia having a history of past earthquakes that have resulted in fatalities due to collapsed URM buildings. A comparison is presented here of the URM building stock and the seismic vulnerability of Christchurch and Adelaide in order to demonstrate the relevance to Australian cities of observations in Christchurch resulting from the 2010/2011 Canterbury earthquake swarm. It is shown that the materials, architecture and hence earthquake strength of URM buildings in both countries is comparable and that Adelaide and other cities of Australia have seismic vulnerability sufficient to cause major damage to their URM buildings should a design level earthquake occur. Such an earthquake is expected to cause major building damage, and fatalities should be expected.