Search

found 5 results

Research papers, University of Canterbury Library

This dissertation addresses a diverse range of applied aspects in ground motion simulation validation via the response of complex structures. In particular, the following topics are addressed: (i) the investigation of similarity between recorded and simulated ground motions using code-based 3D irregular structural response analysis, (ii) the development of a framework for ground motion simulations validation to identify the cause of differences between paired observed and simulated dataset, and (iii) the illustration of the process of using simulations for seismic performance-based assessment. The application of simulated ground motions is evaluated for utilisation in engineering practice by considering responses of 3D irregular structures. Validation is performed in a code-based context when the NZS1170.5 (NZS1170.5:2004, 2004) provisions are followed for response history analysis. Two real buildings designed by engineers and physically constructed in Christchurch before the 2010-2011 Canterbury earthquake sequence are considered. The responses are compared when the buildings are subjected to 40 scaled recorded and their subsequent simulated ground motions selected from 22 February 2011 Christchurch. The similarity of recorded and simulated responses is examined using statistical methods such as bootstrapping and hypothesis testing to determine whether the differences are statistically significant. The findings demonstrate the applicability of simulated ground motion when the code-based approach is followed in response history analysis. A conceptual framework is developed to link the differences between the structural response subjected to simulated and recorded ground motions to the differences in their corresponding intensity measures. This framework allows the variability to be partitioned into the proportion that can be “explained” by the differences in ground motion intensity measures and the remaining “unexplained” variability that can be attributed to different complexities such as dynamic phasing of multi-mode response, nonlinearity, and torsion. The application of this framework is examined through a hierarchy of structures reflecting a range of complexity from single-degree-of-freedom to 3D multi-degree-of-freedom systems with different materials, dynamic properties, and structural systems. The study results suggest the areas that ground motion simulation should focus on to improve simulations by prioritising the ground motion intensity measures that most clearly account for the discrepancies in simple to complex structural responses. Three approaches are presented to consider recorded or simulated ground motions within the seismic performance-based assessment framework. Considering the applications of ground motions in hazard and response history analyses, different pathways in utilising ground motions in both areas are explored. Recorded ground motions are drawn from a global database (i.e., NGA-West2 Ancheta et al., 2014). The NZ CyberShake dataset is used to obtain simulations. Advanced ground motion selection techniques (i.e., generalized conditional intensity measure, GCIM) are used for ground motion selection at a few intensity levels. The comparison is performed by investigating the response of an example structure (i.e., 12-storey reinforced concrete special moment frame) located in South Island, NZ. Results are compared and contrasted in terms of hazard, groundmotion selection, structural responses, demand hazard, and collapse risk, then, the probable reasons for differences are discussed. The findings from this study highlight the present opportunities and shortcomings in using simulations in risk assessment. i

Research papers, Victoria University of Wellington

It is well established that urban green areas provide a wide range of social, aesthetic, environmental and economic benefits. The importance of urban green spaces has been known for decades; however the relationship between urban livability and green areas, as incorporated in overall urban green structure, has become the focus of international studies during the last 10 to 15 years. The spatial structure of green space systems has important consequences for urban form; configuring urban resources, controlling urban size, improving ecological quality of urban areas and preventing or mitigating natural disasters. However, in the field of architecture or urban design, very little work has been done to investigate the potential for built form to define and differentiate the edge to a green corridor ... This thesis therefore poses the hypothesis that architecture and urban design critically mediate between city and green corridor, through intensification and definition of the built edge, as a means of contributing to an ecological city form.

Audio, Radio New Zealand

As Auckland and Northland brace for more atrocious weather, city leaders are calling for funding to repair the city's broken infrastructure to be along the lines of the help given to Christchurch after the quakes. Auckland deputy mayor Desley Simpson says that the damage so far is equivalent to the biggest non earthquake event the country has ever had and should be treated accordingly. The Opportunities Party says the "alliance" model established after the earthquakes, was effective and would work for Auckland's rebuild, because it provides a structure that the Central Government can fund directly. ToP leader Raf Manji was a Christchurch councillor after the quakes and closely involved in the rebuild. He tells Kathryn Ryan it is vital to ensure water and transport infrastructure is repaired quickly and efficiently, especially with a view to future extreme weather events - and there is much to learn from the post-quake rebuild.

Research papers, University of Canterbury Library

Gravelly soils’ liquefaction has been documented since early 19th century with however the focus being sand-silts mixture – coarse documentation of this topic, that gravels do in fact liquefy was only acknowledged as an observation. With time, we have been impacted by earthquakes, EQ causing more damage to our property: life and environment-natural and built. In this realm of EQ related-damage the ground or soils in general act as buffer between the epicentre and the structures at a concerned site. Further, in this area, upon the eventual acknowledgement of liquefaction of soils as a problem, massive efforts were undertaken to understand its mechanics, what causes and thereby how to mitigate its ill-effects. Down that lane, gravelly soils’ liquefaction was another milestone covered in early 20th century, and thus regarded as a problematic subject. This being a fairly recent acknowledgement, efforts have initiated in this direction (or area of particle size under consideration-gravels>2mm), with this research outputs intended to complement that research for the betterment of our understanding of what’s happening and how shall we best address it, given the circumstances: socio (life) - environment (structures) - economic (cost or cost-“effectiveness’) and of course political (our “willingness” to want to address the problem). Case histories from at least 29 earthquakes worldwide have indicated that liquefaction can occur in gravelly soils (both in natural deposits and manmade reclamations) inducing large ground deformation and causing severe damage to civil infrastructures. However, the evaluation of the liquefaction resistance of gravelly soils remains to be a major challenge in geotechnical earthquake engineering. To date, laboratory tests aimed at evaluating the liquefaction resistance of gravelly soils are still very limited, as compared to the large body of investigations carried out on assessing the liquefaction resistance of sandy soils. While there is a general agreement that the liquefaction resistance of gravelly soils can be as low as that of clean sands, previous studies suggested that the liquefaction behaviour of gravelly soils is significantly affected by two key factors, namely relative density (Dr) and gravel content (Gc). While it is clear that the liquefaction resistance of gravels increases with the increasing Dr, there are inconclusive and/or contradictory results regarding the effect of Gc on the liquefaction resistance of gravelly soils. Aimed at addressing this important topic, an investigation is being currently carried out by researchers at the University of Canterbury, UC. As a first step, a series of undrained cyclic triaxial tests were conducted on selected sand-gravel mixtures (SGMs), and inter-grain state framework concepts such as the equivalent and skeleton void ratios were used to describe the joint effects of Gc and Dr on the liquefaction resistance of SGMs. Following such experimental effort, this study is aimed at providing new and useful insights, by developing a critical state-based method combined with the inter-grain state framework to uniquely describe the liquefaction resistance of gravelly soils. To do so, a series of monotonic drained triaxial tests will be carried out on selected SGMs. The outcomes of this study, combined with those obtained to date by UC researchers, will greatly contribute to the expansion of a worldwide assessment database, and also towards the development of a reliable liquefaction triggering procedure for characterising the liquefaction potential of gravelly soils, which is of paramount importance not only for the New Zealand context, but worldwide. This will make it possible for practising engineers to identify liquefiable gravelly soils in advance and make sound recommendations to minimise the impact of such hazards on land, and civil infrastructures.

Research papers, Victoria University of Wellington

Aotearoa has undoubtedly some of the most beautiful landscapes in the world, a privilege for its inhabitants. However, as our cities have developed post-colonisation, the connection between the natural environment and its occupants has diminished. Designers play a vital role within an ever evolving world to progress the built environment in a way that reflects and restores vital values that have been deprioritised. Future practice should prioritise diversity, care for the land, enhancement of community space, and sustainable practices. This research sets out to demonstrate that new design methodologies can encourage kaitiakitanga, whilst meeting the needs of urban public space. Initially through critical analysis and literature based research, a study of Ōtautahi Christchurch, the South Island’s largest city, was undertaken. The principles of a ‘15 minute city’ were also explored and applied to the city, establishing issues within the built environment that drove the overall research direction. Through the tools of critical reflection and a research through design methodology, a design toolkit was constructed. This toolkit sets out to provide designers with a simple streamlined method of developing urban interventions that are sustainable and beneficial for human well-being. The toolkit incorporates an abstraction of the ‘15 minute city’ ideology and introduces the concepts of evolving green transportation routes within cities. Ōtautahi Christchurch, a city with a significant history of earthquake-caused damage, was chosen as the primary site for the application of this research’s proposed toolkit. The city becomes a canvas for an urban rebuild that explores and aims to set a precedent for a progressive 21st-century city. A key finding as the toolkit research developed was the idea of a ‘temporary’ phase or intervention, being added to traditional design methodologies prior to permanent building. The research explains how this temporary phase could more actively engage diverse user groups and create active conversations between communities and designers. The refined toolkit sets outs proposed timeline phases, methods of site analysis and development of design drivers. Alongside this, a modular architectural system establishes a design proposal for the temporary phase of an individual site within an evolving green route. This outcome provides further opportunity for realistic testing, which would actively involve communities and aims to shift our priorities within urban development. The introduction of the ‘temporary’ phase is beneficial in mitigating psychological implications on people and limiting physical impacts on the landscape. The final design stage of the thesis applied the toolkit process to three sites in Ōtautahi Christchurch. Through a holistic lens, the toolkit framework set out methods to collate information that provides guidance for development on the sites. While some layers are initiated simply by recognising site characteristics, others are informed through software such as GIS. Connected by a proposed green transport route, the three initial sites are developed with temporary interventions that utilise the modular design set out previously in the research. Contextualising the interventions on real world sites tested the flexibility of the system and allowed for critical reflection on the applicability of the toolkit to Aotearoa. The research concludes by identifying future research opportunities and speculates on possible applications of its findings within the real world. Temporary Permanence highlights the significant role that we, as designers, have in shifting urban priorities to create more holistic, sustainable, and inclusive cities for people and the planet.