Search

found 2 results

Research papers, University of Canterbury Library

Surface-rupturing earthquakes can trigger the sudden avulsion of river channels, causing rapid and persistent coseismic flooding of previously unaffected areas. This phenomenon, known as fault-rupture-induced river avulsion (FIRA), occurs when fault displacement significantly alters river channel topography. The importance of understanding FIRA as a secondary seismic hazard was highlighted by events during the 2010 Darfield and 2016 Kaikoura earthquakes in New Zealand. This thesis develops a national model to identify and quantify FIRA susceptibility across New Zealand by integrating hydrological datasets (NIWA RiverMaps and Flood Statistics) with active fault information (NZ Active Faults Database and RSQSim earthquake simulations). The methodology applies the F-index framework proposed by McEwan et al. (2023), which quantifies FIRA potential based on the ratio of fault throw plus discharge-dependent depth to bank full depth at each fault-river intersection. The model successfully identified 3,796 potential FIRA-susceptible fault-river intersections nationwide, with 451 involving waterways equal to or larger than the Hororata River. Regional analysis revealed higher concentrations of FIRA-susceptible sites in the Bay of Plenty, Canterbury, and Marlborough regions. Validation against historical events showed the model effectively located known FIRA occurrences from the Kaikoura and Darfield earthquakes, though with some limitations in accurately predicting F-index values due to complex fault displacement patterns and challenges in modelling bank full depths of large, braided rivers. This research establishes New Zealand's first nationwide assessment of fault-induced river avulsion susceptibility. The approach creates a structured methodology for identifying high-risk fault-river intersections and determining which sites require thorough localised examination. The methodology developed offers a template for similar assessments in other tectonically active regions and contributes to improving earthquake hazard assessment and disaster preparedness planning.

Audio, Radio New Zealand

Artist and landscape architect Bridget Allen wouldn't have known how appropriate the name of her gardening business was to be when she set it up, out of Ilam art school and working at the Christchurch Botanic Gardens.  The name Regenerative Gardening Maintenance was prophetic given her city and its landscape was about to start regenerating.  The 2010-2011 Canterbury earthquakes saw not only buildings turned to rubble, large tracts of land, including an area around Ōtākaro Avon River the size of two New York Central Parks, started to turn from suburbia back to nature. The red zone has been turning green ever since.  In the wake of tragedy artists and gardeners came together to innovate and create new public spaces, with an eye on sustainability and community connection. Allen cofounded New Brighton sewing charity Stitch-o-Mat and retrained as a landscape architect.  Since 2023 she has been the director of The Green Lab, which began after the quakes as Greening the Rubble, creating urban green spaces and events for connection, while also working with residents to make their own backyards more sustainable.     Ever busy with working and planting bees, workshops to build habitats for plants and nature, and consultations to help people make their backyards more sustainable, on August 16 Bridget is running with The Green Lab Birds of Brighton printmaking workshops. It's at the Make Station in New Brighton Mall at 11am and 1pm. No experience is needed.  She joined Culture 101's Mark Amery.