Search

found 16 results

Images, eqnz.chch.2010

Removal of the earthquake damaged footbridge over the Avon at Medway Street. Tuesday 12 February 2013. File reference: CCL-2013 -02-12-untitled6.bmp From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Removal of the earthquake damaged footbridge over the Avon at Medway Street. Tuesday 12 February 2013. File reference: CCL-2013 -02-12-untitled7.bmp From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Removal of the earthquake damaged footbridge over the Avon at Medway Street. Tuesday 12 February 2013. File reference: CCL-2013 -02-12-untitled8.bmp From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Removal of the earthquake damaged footbridge over the Avon at Medway Street. Tuesday 12 February 2013. File reference: CCL-2013 -02-12-untitled3.bmp From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Removal of the earthquake damaged footbridge over the Avon at Medway Street. Tuesday 12 February 2013. File reference: CCL-2013 -02-12-untitled.bmp From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Removal of the earthquake damaged footbridge over the Avon at Medway Street. Tuesday 12 February 2013. File reference: CCL-2013 -02-12-untitled2.bmp From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Removal of the earthquake damaged footbridge over the Avon at Medway Street. Tuesday 12 February 2013. File reference: CCL-2013 -02-12-untitled5.bmp From the collection of Christchurch City Libraries.

Images, eqnz.chch.2010

Removal of the earthquake damaged footbridge over the Avon at Medway Street. Tuesday 12 February 2013. File reference: CCL-2013 -02-12-untitled4.bmp From the collection of Christchurch City Libraries.

Videos, UC QuakeStudies

A video of the removal of the earthquake-damaged Medway Street bridge from the banks of the Avon River. The video shows members of the Stronger Christchurch Infrastructure Rebuild Team removing the bridge and preparing it for transport to the Ferrymead Heritage Park. It will remain at the park until a permanent home can be found for it as an earthquake memorial.

Images, UC QuakeStudies

A photograph of painted bird cut-outs hanging from a tree next to the Avon River on Oxford Terrace, near the Worcester Street bridge. The decorations were part of an installation titled The River, created by students from Lincoln University's School of Landscape Architecture for Canterbury Tales, a carnivalesque procession and the main event of FESTA 2013.

Images, UC QuakeStudies

A photograph of painted bird cut-outs hanging from a tree next to the Avon River on Oxford Terrace, near the Worcester Street bridge. The decorations were part of an installation titled The River, created by students from Lincoln University's School of Landscape Architecture for Canterbury Tales, a carnivalesque procession and the main event of FESTA 2013.

Images, UC QuakeStudies

A photograph of one of several painted bird cut-outs hanging from a tree next to the Avon River on Oxford Terrace, near the Worcester Street bridge. The decorations were part of an installation titled The River, created by students from Lincoln University's School of Landscape Architecture for Canterbury Tales, a carnivalesque procession and the main event of FESTA 2013.

Research papers, University of Canterbury Library

The Mw 6.2 February 22nd 2011 Christchurch earthquake (and others in the 2010-2011 Canterbury sequence) provided a unique opportunity to study the devastating effects of earthquakes first-hand and learn from them for future engineering applications. All major events in the Canterbury earthquake sequence caused widespread liquefaction throughout Christchurch’s eastern suburbs, particularly extensive and severe during the February 22nd event. Along large stretches of the Avon River banks (and to a lesser extent along the Heathcote) significant lateral spreading occurred, affecting bridges and the infrastructure they support. The first stage of this research involved conducting detailed field reconnaissance to document liquefaction and lateral spreading-induced damage to several case study bridges along the Avon River. The case study bridges cover a range of ages and construction types but all are reinforced concrete structures which have relatively short, stiff decks. These factors combined led to a characteristic deformation mechanism involving deck-pinning and abutment back-rotation with consequent damage to the abutment piles and slumping of the approaches. The second stage of the research involved using pseudo-static analysis, a simplified seismic modelling tool, to analyse two of the bridges. An advantage of pseudo-static analysis over more complicated modelling methods is that it uses conventional geotechnical data in its inputs, such as SPT blowcount and CPT cone resistance and local friction. Pseudo-static analysis can also be applied without excessive computational power or specialised knowledge, yet it has been shown to capture the basic mechanisms of pile behaviour. Single pile and whole bridge models were constructed for each bridge, and both cyclic and lateral spreading phases of loading were investigated. Parametric studies were carried out which varied the values of key parameters to identify their influence on pile response, and computed displacements and damages were compared with observations made in the field. It was shown that pseudo-static analysis was able to capture the characteristic damage mechanisms observed in the field, however the treatment of key parameters affecting pile response is of primary importance. Recommendations were made concerning the treatment of these governing parameters controlling pile response. In this way the future application of pseudo-static analysis as a tool for analysing and designing bridge pile foundations in liquefying and laterally spreading soils is enhanced.