Search

found 9 results

Research papers, Victoria University of Wellington

New Zealand has a housing crisis. High land prices and high construction costs have all contributed to unaffordable housing. Additionally, the New Zealand dream of the "quarter acre section" lifestyle that has encouraged urban sprawl throughout our major cities with increasingly unsustainable services, transport and road costs. New and exciting housing options need to be explored for urban areas. Christchurch is a city in New Zealand where urban sprawl has always been prevalent. In the wake of the 2010/2011 earthquakes sprawl increased further, relocating large suburban areas yet further away from the city centre. This has caused a greater reliance on cars, and a slower revival to the city. Historically there is an aversion to higher density living. Perceived desirability is a large factor. The medium to high density solutions produced thus far have little regard for the concept of "home", with the use of substandard materials, and monotonous and repetitive design, and essentially falling short of addressing the needs of New Zealand's increasing population. "A Home with a View" looks to address the needs of New Zealanders and Christchurch, through the individual tower-house within an overarching tower-housing neighbourhood development. The design as research thesis develops a medium density tower-housing neighbourhood as a mini city-scape, through the exploration of the tower-house as an intimate space to live and observe from. Tower-housing has the potential to create a delightful, lively neighbourhood environment that contributes to quirky, new, and exciting housing options for New Zealand. The tower-house creates desire through unconventional lifestyle and highlights engaging solutions to an individual vertical housing type.

Research papers, Lincoln University

When a tragedy occurs of local or national scale throughout the world a memorial is often built to remember the victims, and to keep the tragedy fresh in the minds of generations with the conviction that this must not be repeated. Memorials to commemorate natural disasters very to the objective of a human induced tragedy in that future catastrophic events that affect the lives and livelihood of many citizens are sure to reoccur in countries that are geographically pre-disposed to the ravages of nature. This thesis examines memorial sites as case studies in New Zealand and Japan to explore the differences in how these two countries memorialise earthquakes, and tsunamis in the case of Japan, and whether there are lessons that each could learn from each other. In so doing, it draws largely on scholarly literature written about memorials commemorating war as little is written on memorials that respond to natural disasters. Visited case sites in both countries are analysed through multiple qualitative research methods with a broad view of what constitutes a memorial when the landscape is changed by the devastation of a natural disaster. How communities prepare for future events through changes in planning legislation, large scale infrastructure, tourism and preparedness for personal safety are issues addressed from the perspective of landscape architecture through spatial commemorative places. The intentions and meanings of memorials may differ but in the case of a memorial of natural disaster there is a clear message that is common to all. To reduce the severity of the number of deaths and level of destruction, education and preparedness for future events is a key aim of memorials and museums.

Articles, UC QuakeStudies

An edited copy of the pdf transcript of Laura's second earthquake story, captured by the UC QuakeBox Take 2 project. At the participant's request, parts of this transcript have been redacted. Interviewer: Jennifer Middendorf. Transcriber: Laura Moir.

Research papers, University of Canterbury Library

Several concrete cladding panels were damaged during the 2011 Christchurch Earthquakes in New Zealand. Damage included partial collapse of panels, rupture of joint sealants, cracking and corner crushing. Installation errors, faulty connections and inadequate detailing were also contributing factors to the damage. In New Zealand, two main issues are considered in order to accommodate story drifts in the design of precast cladding panels: 1) drift compatibility of tieback or push-pull connections and 2) drift compatibility of corner joints. Tieback connections restrain the panels in the out-of-plane direction while allowing in-plane translation with respect to the building frame. Tieback connections are either in the form of slots or oversized holes or ductile rods usually located at the top of the panels. Bearing connections are also provided at the bottom of panels to transfer gravity loads. At the corners of a building, a vertical joint gap, usually filled with sealants, is provided between the two panels on the two orthogonal sides to accommodate the relative movement. In cases where the joint gap is not sufficient to accommodate the relative movements, panels can collide, generating large forces and the likely failure of the connections. On the other hand, large gaps are aesthetically unpleasing. The current design standards appear to recognize these issues but then leave most of the design and detailing to the discretion of the designers. In the installation phase, the alignment of panels is one of the main challenges faced by installers (and/or contractors). Many prefer temporary props to guide, adjust and hold the panels in place whilst the bearing connections are welded. Moreover, heat generated from extensive welding can twist the steel components inducing undesirable local stresses in the panels. Therefore, the installation phase itself is time-consuming, costly and prone to errors. This paper investigates the performance of a novel panel system that is designed to accommodate lateral inter-story drift through a ‘rocking’ motion. In order to gauge the feasibility of the system, six 2m high precast concrete panels within a single-story steel frame structure have been tested under increasing levels of lateral cyclic drift at the University of Canterbury, New Zealand. Three different panel configurations are tested: 1) a panel with return cover and a flat panel at a corner under unidirectional loading, 2) Two adjacent flat panels under unidirectional loading, and 3) Two flat panels at another oblique corner under bidirectional loading. A vertical seismic joint of 25 mm, filled with one-stage joint sealant, is provided between two of the panels. The test results show the ability of the panels with ‘rocking’ connection details to accommodate larger lateral drifts whilst allowing for smaller vertical joints between panels at corners, quick alignment and easy placement of panels without involving extensive welding on site.