Christchurch 2011 earthquake: 10 years on
Audio, Radio New Zealand
Jo Gallagher was working as a St John Advanced paramedic on February 22 10 years ago and was treating a patient when the quake struck. She joins Jesse to share her story.
Jo Gallagher was working as a St John Advanced paramedic on February 22 10 years ago and was treating a patient when the quake struck. She joins Jesse to share her story.
Misko Cubrinovski is interested how the ground and the structures on - and in - it behave during an earthquake.
Survivors are gathering in Christchurch today to remember those who died in the devastating Christchurch earthquake of 2011. Of the 185 people who were killed, 115 died when the CTV building collapsed. Former CTV employee Tom Hawker watched his workplace collapse in front of him. He speaks to Susie Ferguson.
Liquefaction lessons from the 2011 Christchurch earthquake, and biotechnologists doing interesting things with plants.
In less than a minute, Christchurch and its people will be changed forever. Produced by Katy Gosset and Justin Gregory.
RNZ is launching a new podcast today marking the tenth anniversary of Christchurch earthquake. It's called Fragments: Firsthand accounts of the February 2011 earthquakes. The podcast features interviews done with quake survivors recorded in the months following the devastating earthquake recorded by locals Julie Hutton and Sandra Close. RNZ checked in with some of the people Hutton and Close spoke to ten years on from the disaster. Katy Gosset produced and presented the podcast. An earlier version of this article failed to reference the work from Julie Hutton and Sandra Close.
A prominent Christchurch property investor says the Government's anchor projects meant to help rebuild the city faster, has instead slowed it down. After the 2011 earthquake, the Government launched a recovery plan for the CBD, which had 16 anchor projects designed to spur on the rebuild. However, many have been plagued by delays and are still unfinished. Property investor Antony Gough told RNZ reporter Anan Zaki that unlike the Government, it was the private sector which ploughed ahead with the rebuild.
Cantabrians are still surrounded broken buildings and empty spaces on the 10th anniversary of the devastating 22 February 2011 Christchurch earthquake. The disaster forced 70 percent of the CBD to be demolished. The Government launched an ambitious recovery plan to help it recover in 2012. The Christchurch Central Recovery Plan, dubbed the "blueprint" would dictate the rebuild of the central city. To support it, the Government would complete a series of "anchor projects", to encourage investment in the city and make it a more attractive place to live in. As Anan Zaki reports, the anchor projects appeared to weigh down the progress of the rebuild.
Paul Bushnell is talking today about how different clichés are subverted by great storytelling: Fragments, an RNZ series about the 2011 Christchurch earthquake, and Carrier from the USA - what would once have been called a radio drama.
We aim to investigate the role of insurance in business recovery following the devastating Christchurch earthquake in February, 22nd, 2011. We analyze data from two business surveys conducted after the earthquake to examine how insurance affected business operation in the aftermath of the earthquake both in the short-term and longer-term. For the short-term analysis, we use a combination of propensity score matching (PSM) and linear probability model (LPM) to analyze the data. We first estimate the propensity scores for insurance take-up of each firm conditional on the firm’s individual characteristics. Stratification based on the estimated propensity scores is used to match the treated (insured) and the control (uninsured) firms. We then estimate the probability of firms’ continuing operations with a set of control variables to account for the level of damage and disruption caused by the quake in each stratum. We find little evidence of any beneficial effect of insurance coverage on business continuity in the short-run. For the longer-term analysis, we analyze the available survey data using logistic regression. The result suggests that business interruption insurance significantly promotes increased level of long-term productivity for surviving firms following the earthquake.
The Aromaunga Baxters Flowers nursery in Heathcote, Christchurch sits right above the point where the earthquake struck on 22 February 2011. The greenhouses on the steep slopes of the Port Hills, as well as a big old villa and other brick buildings were badly damaged. Ten years on co-owner John Baxter says the earthquake damage is still being repaired, but sales have been boosted by a lack of imported flowers due to Covid-19 restrictions.
The last seven years have seen southern New Zealand a ected by several large and damaging earthquakes: the moment magnitude (MW) 7.8 Dusky Sound earthquake on 15 July 2009, the MW 7.1 Dar eld (Canterbury) earthquake on 4 September 2010, and most notably the MW 6.2 Christchurch earthquake on 22 February 2011 and the protracted aftershock sequence. In this thesis, we address the postseismic displacement produced by these earthquakes using methods of satellite-based geodetic measurement, known as Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS), and computational modelling. We observe several ground displacement features in the Canterbury and Fiordland regions during three periods: 1) Following the Dusky Sound earthquake; 2) Following the Dar eld earthquake and prior to the Christchurch earthquake; and 3) Following the Christchurch earthquake until February 2015. The ground displacement associated with postseismic motion following the Dusky Sound earthquake has been measured by continuous and campaign GPS data acquired in August 2009, in conjunction with Di erential Interferometric Synthetic Aperture Radar (DInSAR) observations. We use an afterslip model, estimated by temporal inversion of geodetic data, with combined viscoelastic rebound model to account for the observed spatio-temporal patterns of displacement. The two postseismic processes together induce a signi cant displacement corresponding to principal extensional and contractual strain rates of the order of 10⁻⁷ and 10⁻⁸ yr⁻¹ respectively, across most of the southern South Island. We also analyse observed postseismic displacement following the Dusky Sound earthquake using a new inversion approach in order to describe afterslip in an elasticviscoelastic medium. We develop a mathematical framework, namely the "Iterative Decoupling of Afterslip and Viscoelastic rebound (IDAV)" method, with which to invert temporally dense and spatially sparse geodetic observations. We examine the IDAV method using both numerical and analytical simulations of Green's functions. For the post-Dar eld time interval, postseismic signals are measured within approximately one month of the mainshock. The dataset used for the post-Dar eld displacement spans the region surrounding previously unrecognised faults that ruptured during the mainshock. Poroelastic rebound in a multi-layered half-space and dilatancy recovery at shallow depths provide a satisfactory t with the observations. For the post-Christchurch interval, campaign GPS data acquired in February 2012 to February 2015 in four successive epochs and 66 TerraSAR-X (TSX) SAR acquisitions in descending orbits between March 2011 and May 2014 reveal approximately three years of postseismic displacement. We detect movement away from the satellite of ~ 3 mm/yr in Christchurch and a gradient of displacement of ~ 4 mm/yr across a lineament extending from the westernmost end of the Western Christchurch Fault towards the eastern end of the Greendale East Fault. The postseismic signals following the Christchurch earthquake are mainly accounted for by afterslip models on the subsurface lineament and nearby faults.
Motoko Kakubayashi joins us from Toyko where they are also about to mark a significant anniversary. A few weeks after the 2011 Christchurch earthquake, a magnitude 9.0 earthquake hit the east coast of Japan, triggering a tsunami that destroyed large parts of the coast, including damage to the Fukushima Dai-ichi Nuclear Power Plant. More than 15,000 lives were lost, more than 2000 still remain missing. In one afternoon, half a million people became homeless, and the search for family and friends at evacuation shelters began.
This dissertation contains three essays on the impact of unexpected adverse events on student outcomes. All three attempt to identify causal inference using plausibly exogenous shocks and econometric tools, applied to rich administrative data. In Chapter 2, I present evidence of the causal effects of the 2011 Christchurch earthquake on tertiary enrolment and completion. Using the shock of the 2011 earthquake on high school students in the Canterbury region, I estimate the effect of the earthquake on a range of outcomes including tertiary enrolment, degree completion and wages. I find the earthquake causes a substantial increase in tertiary enrolment, particularly for low ability high school leavers from damaged schools. However, I find no evidence that low ability students induced by the earthquake complete a degree on time. In Chapter 3, I identify the impact of repeat disaster exposure on university performance, by comparing outcomes for students who experience their first earthquake while in university, to outcomes for students with prior earthquake exposure. Using a triple-differences estimation strategy with individual-by-year fixed effects, I identify a precise null effect, suggesting that previous experience of earthquakes is not predictive of response to an additional shock two years later. The final chapter investigates the impact of injuries sustained in university on academic performance and wages, using administrative data including no-fault insurance claims, emergency department attendance and hospital admissions, linked with tertiary enrolment. I find injuries, including minor injuries, have a negative effect on re-enrolment, degree completion and grades in university.
On the 10th anniversary of the devastating 2011 Christchurch quake we hear the first-hand story from Zara Potts, who describes how the brick cafe she was in caved in around her; we hear from Dr Caroline Bell on how the earthquakes impacted the mental health of Cantabrians and how things are looking a decade later; and our panellists share their own memories from that day.
A Christchurch man with terminal cancer is using his final days to battle his insurance company, a decade on from the deadly earthquakes. Brian Shaw owns an apartment that's in a block of 11. They were all damaged in 2011. Shaw is a building consent officer. He says getting technical reports and chasing a settlement with insurer Vero has already cost the unit owners about $400,000, and they still have not even made it to court. On Friday morning he will be protesting outside Vero's Christchurch office, along with other unhappy customers.
Little is known about The Wizard of New Zealand who took centre stage in Christchurch's Cathedral Square from the 70s until the Christchurch earthquakes in 2011, which saw the city in a state of disrepair. A man who challenged political, social and cultural ideology, The Wizard posed provocative questions in this public space, much to the delight, and sometimes dismay, of passersby. But the background to why The Wizard was there in the first place has been something of a mystery... until now. Sonia Yee finds out more in this episode of Eyewitness.
New Zealand lies on the Pacific Ring of Fire – the belt of vulnerable, unpredictable fault lines which are the primary cause for earthquakes in this country. Most recently, as evident in the aftermath of the 2011 Christchurch earthquake -the destruction of the city centre led to the emergence of sub centres in different parts of the city each with different, desperate needs. The lack of preparedness in the wake of an earthquake hence, exacerbated this destitution. This research explores architecture’s role in the sub-centre. How can architecture facilitate resilience through this decentralised typology? The design-led approach critiques the implications of architecture as a tool for resilience whilst highlighting the desperate need for the engagement of architecture in planning before a disaster strikes. The resulting response explores resilience through an architectural lens that has a wider infrastructural, contextual and user-focussed need.
The David and Goliath battle over a heritage building sitting in the way of a planned $473 million dollar, multi-use arena for Christchurch has ended up in court. The 25,000-seated, roofed arena is the final anchor project for the Christchurch rebuild and will be designed to host everything from All Blacks tests to big concerts. But sitting on the edge of the site, at 212 Madras Street, is the NG Building, a 115-year old warehouse that's home to a number of creative businesses. It escaped the worst of the 2011 earthquake and was strengthened by its owners: Roland Logan and Sharon Ng. They say they were told in 2013 the building could be incorporated into the arena's design, and are at loggerheads over its compulsory acquisition. Last week they were at the High Court seeking an injunction that would allow them to temporarily maintain ownership of the building, and that decision was released yesterday - and upheld. Roland joins Kathryn to discuss why they hope the building can be saved.
There are many swaths of land that are deemed unsuitable to build on and occupy. These places, however, are rarely within an established city. The Canterbury earthquakes of 2010 and 2011 left areas in central Christchurch with such significant land damage that it is unlikely to be re-inhabited for a considerable period of time. These areas are commonly known as the ‘Red Zone’.This thesis explores redevelop in on volatile land through innovative solutions found and adapted from the traditional Indonesian construction techniques. Currently, Indonesia’s vernacular architecture sits on the verge of extinction after a cultural shift towards the masonry bungalow forced a rapid decline in their occupation and construction. The 2004 Indian Ocean earthquake and tsunami illustrated the bungalows’ poor performance in the face of catastrophic seismic activity, being outperformed by the traditional structures. This has been particularly evident in the Rumah Aceh construction of the Aceh province in Northern Sumatra. Within a New Zealand context an adaptation and modernisation of the Rumah Aceh construction will generate an architectural response not currently accepted under the scope of NZS 3604:2011; the standards most recent revision following the Canterbury earthquake of 2010 concerning timber-based seismic performance. This architectural exploration will further address light timber structures, their components, sustainability and seismic resilience. Improving new builds’ durability as New Zealand moves away from the previously promoted bungalow model that extends beyond residential and into all aspects of New Zealand built environment.
Advanced seismic effective-stress analysis is used to scrutinize the liquefaction performance of 55 well-documented case-history sites from Christchurch. The performance of these sites during the 2010-2011 Canterbury earthquake sequence varied significantly, from no liquefaction manifestation at the ground surface (in any of the major events) to severe liquefaction manifestation in multiple events. For the majority of the 55 sites, the simplified liquefaction evaluation procedures, which are conventionally used in engineering practice, could not explain these dramatic differences in the manifestation. Detailed geotechnical characterization and subsequent examination of the soil profile characteristics of the 55 sites identified some similarities but also important differences between sites that manifested liquefaction in the two major events of the sequence (YY-sites) and sites that did not manifest liquefaction in either event (NN-sites). In particular, while the YY-sites and NN-sites are shown to have practically identical critical layer characteristics, they have significant differences with regard to their deposit characteristics including the thickness and vertical continuity of their critical zones and liquefiable materials. A CPT-based effective stress analysis procedure is developed and implemented for the analyses of the 55 case history sites. Key features of this procedure are that, on the one hand, it can be fully automated in a programming environment and, on the other hand, it is directly equivalent (in the definition of cyclic resistance and required input data) to the CPT-based simplified liquefaction evaluation procedures. These features facilitate significantly the application of effective-stress analysis for simple 1D free-field soil-column problems and also provide a basis for rigorous comparisons of the outcomes of effective-stress analyses and simplified procedures. Input motions for the analyses are derived using selected (reference) recordings from the two major events of the 2010-2011 Canterbury earthquake sequence. A step-by-step procedure for the selection of representative reference motions for each site and their subsequent treatment (i.e. deconvolution and scaling) is presented. The focus of the proposed procedure is to address key aspects of spatial variability of ground motion in the near-source region of an earthquake including extended-source effects, path effects, and variation in the deeper regional geology.
The Canterbury earthquake sequence (2010-2011) was the most devastating catastrophe in New Zealand‘s modern history. Fortunately, in 2011 New Zealand had a high insurance penetration ratio, with more than 95% of residences being insured for these earthquakes. This dissertation sheds light on the functions of disaster insurance schemes and their role in economic recovery post-earthquakes. The first chapter describes the demand and supply for earthquake insurance and provides insights about different public-private partnership earthquake insurance schemes around the world. In the second chapter, we concentrate on three public earthquake insurance schemes in California, Japan, and New Zealand. The chapter examines what would have been the outcome had the system of insurance in Christchurch been different in the aftermath of the Canterbury earthquake sequence (CES). We focus on the California Earthquake Authority insurance program, and the Japanese Earthquake Reinsurance scheme. Overall, the aggregate cost of the earthquake to the New Zealand public insurer (the Earthquake Commission) was USD 6.2 billion. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received only around USD 1.6 billion and USD 0.7 billion from the Japanese and Californian schemes, respectively. We further describe the spatial and distributive aspects of these scenarios and discuss some of the policy questions that emerge from this comparison. The third chapter measures the longer-term effect of the CES on the local economy, using night-time light intensity measured from space, and focus on the role of insurance payments for damaged residential property during the local recovery process. Uniquely for this event, more than 95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Yet, delayed payments were less affective in assisting recovery and cash settlement of claims were more effective than insurance-managed repairs. After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner‘s insurance. Most people chose the second option. Using data from LINZ combined with data from Stats NZ, the fourth chapter empirically investigates what led people to choose this second option, and how peer effect influenced the homeowners‘ choices. Due to climate change, public disclosure of coastal hazard information through maps and property reports have been used more frequently by local government. This is expected to raise awareness about disaster risks in local community and help potential property owners to make informed locational decision. However, media outlets and business sector argue that public hazard disclosure will cause a negative effect on property value. Despite this opposition, some district councils in New Zealand have attempted to implement improved disclosure. Kapiti Coast district in the Wellington region serves as a case study for this research. In the fifth chapter, we utilize the residential property sale data and coastal hazard maps from the local district council. This study employs a difference-in-difference hedonic property price approach to examine the effect of hazard disclosure on coastal property values. We also apply spatial hedonic regression methods, controlling for coastal amenities, as our robustness check. Our findings suggest that hazard designation has a statistically and economically insignificant impact on property values. Overall, the risk perception about coastal hazards should be more emphasized in communities.
In the last two decades, New Zealand (NZ) has experienced significant earthquakes, including the 2010 M 7.2 Darfield, 2011 M 6.2 Christchurch, and 2016 M 7.8 Kaikōura events. Amongst these large events, tens of thousands of smaller earthquakes have occurred. While previous event and ground-motion databases have analyzed these events, many events below M 4 have gone undetected. The goal of this study is to expand on previous databases, particularly for small magnitude (M<4) and low-amplitude ground motions. This new database enables a greater understanding of regional variations within NZ and contributes to the validity of internationally developed ground-motion models. The database includes event locations and magnitude estimates with uncertainty considerations, and tectonic type assessed in a hierarchical manner. Ground motions are extracted from the GeoNet FDSN server and assessed for quality using a neural network classification approach. A deep neural network approach is also utilized for picking P and S phases for determination of event hypocentres. Relative hypocentres are further improved by double-difference relocation and will contribute toward developing shallow (< 50 km) seismic tomography models. Analysis of the resulting database is compared with previous studies for discussion of implications toward national hazard prediction models.
Observations of out-of-plane (OOP) instability in the 2010 Chile earthquake and in the 2011 Christchurch earthquake resulted in concerns about the current design provisions of structural walls. This mode of failure was previously observed in the experimental response of some wall specimens subjected to in-plane loading. Therefore, the postulations proposed for prediction of the limit states corresponding to OOP instability of rectangular walls are generally based on stability analysis under in-plane loading only. These approaches address stability of a cracked wall section when subjected to compression, thereby considering the level of residual strain developed in the reinforcement as the parameter that prevents timely crack closure of the wall section and induces stability failure. The New Zealand code requirements addressing the OOP instability of structural walls are based on the assumptions used in the literature and the analytical methods proposed for mathematical determination of the critical strain values. In this study, a parametric study is conducted using a numerical model capable of simulating OOP instability of rectangular walls to evaluate sensitivity of the OOP response of rectangular walls to variation of different parameters identified to be governing this failure mechanism. The effects of wall slenderness (unsupported height-to-thickness) ratio, longitudinal reinforcement ratio of the boundary regions and length on the OOP response of walls are evaluated. A clear trend was observed regarding the influence of these parameters on the initiation of OOP displacement, based on which simple equations are proposed for prediction of OOP instability in rectangular walls.
<b>Construction and Demolition (C&D) waste contributes to over 50% of New Zealand’s overall waste. Materials such as timber, plasterboard, and concrete make up 81% of the C&D waste that goes into landfills each year. Alongside this, more than 235 heritage-listed buildings have been demolished in Christchurch since the 2011 earthquakes. This research portfolio aims to find a solution to decrease C&D waste produced by demolishing heritage buildings.</b> With the recent announcement of The Cathedral of the Blessed Sacrament’s demolition, this will be another building added to the list of lost heritage in Christchurch. This research portfolio aims to bridge the relationship between heritage and waste through the recycling and reuse of the demolished materials, exploring the idea that history and heritage are preserved through building material reuse. This research portfolio mainly focuses on reducing construction and demolition waste in New Zealand, using the design of a new Catholic Cathedral as a vessel. This thesis will challenge how the construction and design industry deals with the demolition of heritage buildings and their contribution to New Zealand’s waste. It aims to explore the idea of building material reuse not only to reduce waste but also to retain the history and heritage of the demolished building within the materials.
When the devastating 6.3 magnitude earthquake hit Christchurch, Aotearoa New Zealand, at 12.51pm on 22nd February 2011, the psychological and physical landscape was irrevocably changed. In the days and weeks following the disaster communities were isolated due to failed infrastructure, continuing aftershocks and the extensive search and rescue effort which focussed resources on the central business district. In such moments the resilience of a community is truly tested. This research discusses the role of grassroots community groups in facilitating community resilience during the Christchurch 2010/11 earthquakes and the role of place in doing so. I argue that place specific strategies for urban resilience need to be enacted from a grassroots level while being supported by broader policies and agencies. Using a case study of Project Lyttelton – a group aspiring towards a resilient sustainable future who were caught at the epicentre of the February earthquake – I demonstrate the role of a community group in creating resilience through self-organised place specific action during a disaster. The group provided emotional care, basic facilities and rebuilding assistance to the residents of Lyttelton, proving to be an invaluable asset. These actions are closely linked to the characteristics of social support and social learning that have been identified as important to socio-ecological resilience. In addition this research will seek to understand and explore the nuances of place and identity and its role in shaping resilience to such dis-placing events. Drawing on community narratives of the displacement of place identity, the potential for a progressive sense of place as instigated by local groups will be investigated as an avenue for adaptation by communities at risk of disaster and place destabilisation.
At the conclusion of the 2010 and 2011 Canterbury earthquakes more than 5100 homes had been deemed unsafe for habitation. The land and buildings of these were labelled “red zoned” and are too badly damaged for remediation. These homes have been demolished or are destined for demolition. To assist the red zone population to relocate, central government have offered to ‘buy out’ home owners at the Governmental Value (GV) that was last reviewed in 2007. While generous in the economic context at the time, the area affected was the lowest value land and housing in Christchurch and so there is a capital shortfall between the 2007 property value and the cost of relocating to more expensive properties. This shortfall is made worse by increasing present day values since the earthquakes. Red zone residents have had to relocate to the far North and Western extremities of Christchurch, and some chose to move even further to neighbouring towns or cities. The eastern areas and commercial centres close to the red zone are affected as well. They have lost critical mass which has negatively impacted businesses in the catchments of the Red Zone. This thesis aims to repopulate the suburbs most affected by the abandonment of the red zone houses. Because of the relative scarcity of sound building sites in the East and to introduce affordability to these houses, an alternative method of development is required than the existing low density suburban model. Smart medium density design will be tested as an affordable and appropriate means of living. Existing knowledge in this field will be reviewed, an analysis of what East Christchurch’s key characteristics are will occur, and an examination of built works and site investigations will also be conducted. The research finds that at housing densities of 40 units per hectare, the spatial, vehicle, aesthetic needs of East Christchurch can be accommodated. Centralising development is also found to offer better lifestyle choices than the isolated suburbs at the edges of Christchurch, to be more efficient using existing infrastructure, and to place less reliance on cars. Stronger communities are formed from the outset and for a full range of demographics. Eastern affordable housing options are realised and Christchurch’s ever expanding suburban tendencies are addressed. East Christchurch presently displays a gaping scar of devastated houses that ‘The New Eastside’ provides a bandage and a cure for. Displaced and dispossessed Christchurch residents can be re-housed within a new heart for East Christchurch.
“One of the most basic and fundamental questions in urban master planning and building regulations is ‘how to secure common access to sun, light and fresh air?” (Stromann-Andersen & Sattrup, 2011). Daylighting and natural ventilation can have significant benefits in office buildings. Both of these ‘passive’ strategies have been found to reduce artificial lighting and air-conditioning energy consumption by as much as 80% (Ministry for the Environment, 2008); (Brager, et al., 2007). Access to daylight and fresh air can also be credited with improved occupant comfort and health, which can lead to a reduction of employee absenteeism and an increase of productivity (Sustainability Victoria, 2008). In the rebuild of Christchurch central city, following the earthquakes of 2010 and 2011, Cantabrians have expressed a desire for a low-rise, sustainable city, with open spaces and high performance buildings (Christchurch City Council, 2011). With over 80% of the central city being demolished, a unique opportunity to readdress urban form and create a city that provides all buildings with access to daylight and fresh air exists. But a major barrier to wide-spread adoption of passive buildings in New Zealand is their dependence on void space to deliver daylight and fresh air – void space which could otherwise be valuable built floor space. Currently, urban planning regulations in Christchurch prioritize density, allowing and even encouraging low performance compact buildings. Considering this issue of density, this thesis aimed to determine which urban form and building design changes would have the greatest effect on building performance in Central City Christchurch. The research proposed and parametrically tested modifications of the current compact urban form model, as well as passive building design elements. Proposed changes were assessed in three areas: energy consumption, indoor comfort and density. Three computer programs were used: EnergyPlus was the primary tool, simulating energy consumption and thermal comfort. Radiance/Daysim was used to provide robust daylighting calculations and analysis. UrbaWind enabled detailed consideration of the urban wind environment for reliable natural ventilation predictions. Results found that, through a porous urban form and utilization of daylight and fresh air via simple windows, energy consumption could be reduced as much as 50% in buildings. With automatic modulation of windows and lighting, thermal and visual comfort could be maintained naturally for the majority of the occupied year. Separation of buildings by as little as 2m enabled significant energy improvements while having only minimal impact on individual property and city densities. Findings indicated that with minor alterations to current urban planning laws, all buildings could have common access to daylight and fresh air, enabling them to operate naturally, increasing energy efficiency and resilience.
In major seismic events, a number of plan-asymmetric buildings which experienced element failure or structural collapse had twisted significantly about their vertical axis during the earthquake shaking. This twist, known as “building torsion”, results in greater demands on one side of a structure than on the other side. The Canterbury Earthquakes Royal Commission’s reports describe the response of a number of buildings in the February 2011 Christchurch earthquakes. As a result of the catastrophic collapse of one multi-storey building with significant torsional irregularity, and significant torsional effects also in other buildings, the Royal Commission recommended that further studies be undertaken to develop improved simple and effective guides to consider torsional effects in buildings which respond inelastically during earthquake shaking. Separately from this, as building owners, the government, and other stakeholders, are planning for possible earthquake scenarios, they need good estimates of the likely performance of both new and existing buildings. These estimates, often made using performance based earthquake engineering considerations and loss estimation techniques, inform decision making. Since all buildings may experience torsion to some extent, and torsional effects can influence demands on building structural and non-structural elements, it is crucial that demand estimates consider torsion. Building seismic response considering torsion can be evaluated with nonlinear time history analysis. However, such analysis involves significant computational effort, expertise and cost. Therefore, from an engineers’ point of view, simpler analysis methods, with reasonable accuracy, are beneficial. The consideration of torsion in simple analysis methods has been investigated by many researchers. However, many studies are theoretical without direct relevance to structural design/assessment. Some existing methods also have limited applicability, or they are difficult to use in routine design office practice. In addition, there has been no consensus about which method is best. As a result, there is a notable lack of recommendations in current building design codes for torsion of buildings that respond inelastically. There is a need for building torsion to be considered in yielding structures, and for simple guidance to be developed and adopted into building design standards. This study aims to undertaken to address this need for plan-asymmetric structures which are regular over their height. Time history analyses are first conducted to quantify the effects of building plan irregularity, that lead to torsional response, on the seismic response of building structures. Effects of some key structural and ground motion characteristics (e.g. hysteretic model, ground motion duration, etc.) are considered. Mass eccentricity is found to result in rather smaller torsional response compared to stiffness/strength eccentricity. Mass rotational inertia generally decreases the torsional response; however, the trend is not clearly defined for torsionally restrained systems (i.e. large λty). Systems with EPP and bilinear models have close displacements and systems with Takeda, SINA, and flag-shaped models yield almost the same displacements. Damping has no specific effect on the torsional response for the single-storey systems with the unidirectional eccentricity and excitation. Displacements of the single-storey systems subject to long duration ground motion records are smaller than those for short duration records. A method to consider torsional response of ductile building structures under earthquake shaking is then developed based on structural dynamics for a wide range of structural systems and configurations, including those with low and high torsional restraint. The method is then simplified for use in engineering practice. A novel method is also proposed to simply account for the effects of strength eccentricity on response of highly inelastic systems. A comparison of the accuracy of some existing methods (including code-base equivalent static method and model response spectrum analysis method), and the proposed method, is conducted for single-storey structures. It is shown that the proposed method generally provides better accuracy over a wide range of parameters. In general, the equivalent static method is not adequate in capturing the torsional effects and the elastic modal response spectrum analysis method is generally adequate for some common parameters. Record-to-record variation in maximum displacement demand on the structures with different degrees of torsional response is considered in a simple way. Bidirectional torsional response is then considered. Bidirectional eccentricity and excitation has varying effects on the torsional response; however, it generally increases the weak and strong edges displacements. The proposed method is then generalized to consider the bidirectional torsion due to bidirectional stiffness/strength eccentricity and bidirectional seismic excitation. The method is shown to predict displacements conservatively; however, the conservatism decreases slightly for cases with bidirectional excitation compared to those subject to unidirectional excitation. In is shown that the roof displacement of multi-storey structures with torsional response can be predicted by considering the first mode of vibration. The method is then further generalized to estimate torsional effects on multi-storey structure displacement demands. The proposed procedure is tested multi-storey structures and shown to predict the displacements with a good accuracy and conservatively. For buildings which twist in plan during earthquake shaking, the effect of P-Δλ action is evaluated and recommendations for design are made. P-Δλ has more significant effects on systems with small post- yield stiffness. Therefore, system stability coefficient is shown not to be the best indicator of the importance of P-Δλ and it is recommended to use post-yield stiffness of system computed with allowance for P-Δλ effects. For systems with torsional response, the global system stability coefficient and post- yield stiffness ration do not reflect the significance of P-Δλ effects properly. Therefore, for torsional systems individual seismic force resisting systems should be considered. Accuracy of MRSA is investigated and it is found that the MRSA is not always conservative for estimating the centre of mass and strong edge displacements as well as displacements of ductile systems with strength eccentricity larger than stiffness eccentricity. Some modifications are proposed to get the MRSA yields a conservative estimation of displacement demands for all cases.
This topic was chosen in response to the devastation caused to Cathedral Square, Christchurch, New Zealand following earthquakes in 2010 and 2011. Working amongst the demolition bought to attention questions about how to re-conceive the square within the rebuilt city. In particular, it raised questions as to how a central square could be better integrated and experienced as a contemporary addition to Christchurch city. This thesis seeks to investigate the ways in which central squares can be better integrated with the contemporary city and how New Urbanist design principles can contribute toward this union. The research principally focuses on the physical and spatial integration of the square with the contemporary city. A drawing-based analysis of select precedent case studies helped to determine early on that overall integration of the contemporary square could be attributed to several interdependent criteria. The detailed studies are supplemented further with literature-based research that narrowed the criteria to five integrative properties. These are: identity, scale and proportion, use, connectivity and natural landscape. These were synthesised, in part, from the integrative New Urbanist movement and the emerging integrative side of the more contemporary Post Urbanist movement. The literature-based research revealed that a more inclusive approach toward New Urbanist and Post Urbanist design methodologies may also produce a more integrated and contemporary square. Three design case studies, using the redesign of Cathedral Square, were undertaken to test this hypothesis. The case studies found that overall, integration was reliant on a harmonious balance between the five integrative properties, concluding that squares can be better integrated with the contemporary city. Further testing of the third concept, which embraced an allied New Urbanist / Post Urbanist approach to design, found that New Urbanism was limited in its contribution toward the integration of the square.