SCIRT 12d Training Manuals and Data
Other, UC QuakeStudies
A zip file containing the suite of SCIRT 12d training manuals and files.
A zip file containing the suite of SCIRT 12d training manuals and files.
A document which sets out the 12d standards at SCIRT.
A zip file containing:Drawing Register template spreadsheetsA full collection of multi-discipline symbols used within the SCIRT drawingsGroup and Catalogue files for setting up the SCIRT AutoCAD Tool PalettesA 12d to AutoCAD Export Map File which 12d uses to export plans from 12d format to dwg format.
A photograph of Dr Lucy D'Aeth, Public Health Specialist for All Right?, taking part in #FiveYearsOn. Lucy holds a sign which reads, "Five years on, I feel... ...tired, but I still love Chch. Lucy Beckenham." All Right? posted the photograph on their Facebook Timeline on 21 February 2016 at 9:12am. All Right? captioned the photograph. "Lucy from Healthy Christchurch is feeling tired, but she still loves Chch!! #fiveyears on #5yearson #allrightnz".
A zip file containing the suite of SCIRT CAD customisation tools. This file contains:SCIRT CAD LISP routines (198 files)SCIRT CAD dialogue box filesa complete set of layer listsa full set of text files containing the complete list of street names in Christchurchtemplates and lists used for translating 12d outputs to useable dwg reference filesa full set of SCIRT CAD manualsThis file is not sufficient for someone to set up a full SCIRT CAD System, but it will allow a developer to select tools to incorporate with an existing system.
A close-up photograph of a 3D-printed WikiHouse stamp, made for FESTA 2013. As part of FESTA, a demonstration and hands-on building workshop titled Go Ahead... Make Your Space was held at CPIT.
The city of Christchurch has experienced over 10,000 aftershocks since the 4th of September 2010 earthquake of which approximately 50 have been greater than magnitude 5. The damage caused to URM buildings in Christchurch over this sequence of earthquakes has been well documented. Due to the similarity in age and construction of URM buildings in Adelaide, South Australia and Christchurch (they are sister cities, of similar age and heritage), an investigation was conducted to learn lessons for Adelaide based on the Christchurch experience. To this end, the number of URM buildings in the central business districts of both cities, the extent of seismic strengthening that exists in both cities, and the relative earthquake hazards for both cities were considered. This paper will report on these findings and recommend strategies that the city of Adelaide could consider to significantly reduce the seismic risk posed by URM buildings in future earthquake.
The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for the case of adhesive anchor connections than for the case of through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal foil sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes and a snapshot of the performed experimental program and the test results are presented herein. http://hdl.handle.net/2292/21050