Search

found 314 results

Images, UC QuakeStudies

A photograph of a section of a mural on the corner of Byron Street and Colombo Street. The section contains a palm tree. A horse is also partially visible. On the left there is the message, "Occupy love and light right here and now. We'll all meet up on Equality Street anyhow. Love light power." Below the message are a variety of hearts in red, white, and different shades of pink.

Images, UC QuakeStudies

The On-Site Operations Coordination Centre (OSOCC) in Latimer Square. After the 22 February 2011 earthquake, emergency service agencies set up their headquarters in Latimer Square. The OSOCC is set up by the United Nations Emergency Relief Coordinator. It helps to coordinate the local emergency response as well as advocate for humanitarian issue in political bodies such as the United National Security Council.

Research papers, University of Canterbury Library

In response to the February 2011 earthquake, Parliament enacted the Canterbury Earthquake Recovery Act. This emergency legislation provided the executive with extreme powers that extended well beyond the initial emergency response and into the recovery phase. Although New Zealand has the Civil Defence Emergency Management Act 2002, it was unable to cope with the scale and intensity of the Canterbury earthquake sequence. Considering the well-known geological risk facing the Wellington region, this paper will consider whether a standalone “Disaster Recovery Act” should be established to separate an emergency and its response from the recovery phase. Currently, Government policy is to respond reactively to a disaster rather than proactively. In a major event, this typically involves the executive being given the ability to make rules, regulations and policy without the delay or oversight of normal legislative process. In the first part of this paper, I will canvas what a “Disaster Recovery Act” could prescribe and why there is a need to separate recovery from emergency. Secondly, I will consider the shortfalls in the current civil defence recovery framework which necessitates this kind of heavy governmental response after a disaster. In the final section, I will examine how

Images, UC QuakeStudies

Photograph captioned by the New Zealand Defence Force, "The NZ Defence Force helps out after the 22 February 2011 earthquake. Army and Air Force Medics as well as Hercules crew and Air Security transfer elderly patients from NZDF ambulances to the Air Force's C-130 Hercules for transport to other parts of NZ. LAC Brendon Stads (left) and SGT Simon Blakeway transfer an elderly patient".

Images, UC QuakeStudies

Photograph captioned by the New Zealand Defence Force, "The NZ Defence Force helps out after the 22 February 2011 earthquake. Army and Air Force Medics as well as Hercules crew and Air Security transfer elderly patients from NZDF ambulances to the Air Force's C-130 Hercules for transport to other parts of NZ. LAC Janine Potter (left) and SGT Sarah Miller comfort an elderly patient".

Images, UC QuakeStudies

Photograph captioned by the New Zealand Defence Force, "The NZ Defence Force helps out after the 22 February 2011 earthquake. Army and Air Force Medics as well as Hercules crew and Air Security transfer elderly patients from NZDF ambulances to the Air Force's C-130 Hercules for transport to other parts of NZ. LAC Russell Cowling and WO1 Tim Crow help carry a patient to the Hercules".

Images, UC QuakeStudies

Damage to Lyttelton following the 22 February 2011 earthquake. The fish and chip shop on London Street (centre) has a collapsed gable and awning. Bricks, plaster and wood are lying where they fell on the footpath, as well as the broken sign. To the left is the Lava Bar which suffered severe structural damage after the earthquake. To the right, the Coastal Living store can be seen which was open after the September earthquake but pulled down after February.

Images, UC QuakeStudies

Photograph captioned by the New Zealand Defence Force, "The NZ Defence Force helps out after the 22 February 2011 earthquake. Army and Air Force Medics as well as Hercules crew and Air Security transfer elderly patients from NZDF ambulances to the Air Force's C-130 Hercules for transport to other parts of NZ. LAC Russell Cowling (left) and SGT Marian Anderson (centre) help transfer a patient to the Hercules".

Images, UC QuakeStudies

Photograph captioned by the New Zealand Defence Force, "The NZ Defence Force helps out after the 22 February 2011 earthquake. Army and Air Force Medics as well as Hercules crew and Air Security transfer elderly patients from NZDF ambulances to the Air Force's C-130 Hercules for transport to other parts of NZ. SGT Sarah Miller and LAC Janine Potter prepare an elderly patient for transfer".

Images, UC QuakeStudies

Photograph captioned by the New Zealand Defence Force, "The NZ Defence Force helps out after the 22 February 2011 earthquake. Army and Air Force Medics as well as Hercules crew and Air Security transfer elderly patients from NZDF ambulances to the Air Force's C-130 Hercules for transport to other parts of NZ. WO1 Tim Crow (left) prepares to lift a patient onto the Hercules".

Images, UC QuakeStudies

Photograph captioned by the New Zealand Defence Force, "The NZ Defence Force helps out after the 22 February 2011 earthquake. Army and Air Force Medics as well as Hercules crew and Air Security transfer elderly patients from NZDF ambulances to the Air Force's C-130 Hercules for transport to other parts of NZ. LAC Brendon Stads (left) and WO1 Tim Crow help transfer an elderly patient onto the Hercules".

Images, UC QuakeStudies

A photograph of a community recreation stall at the Christchurch City Council NZ Safety Week Expo, held in October 2013. The photograph shows various All Right? resources, including 'Five Ways To Wellbeing' corflute signs, as well as information from CCC and other organisations. The Expo was part of the ACC NZ Safety Week, and sought to provide CCC staff and families with information and awareness about home safety, alcohol moderation, sport and fitness.

Images, UC QuakeStudies

A sign outside Lyttelton's grassy market on Oxford Street reading "Join us for a chat". This sign was placed by members of the Lyttelton community who were stitching felt hearts to hand out to members of the public. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.

Images, UC QuakeStudies

An aerial photograph captioned by BeckerFraserPhotos, "A view looking north-west over the central city towards Hagley Park. Hereford Street can be seen in the foreground, as well as Worcester Street running towards the the Christ Church Cathedral. The empty site of the Press Building and Warners hotel can also be seen".

Articles, UC QuakeStudies

A PDF copy of four hoarding designs for Christchurch Hospital. The images read, "Noticed anything awesome lately? Heads up... a helipad is coming!", "Good things are happening here. A new Emergency Department is on its way", "Moving your body can move your mood. Making you strong inside and out - just like our new buildings!" and "What could you do to recharge? Connecting with others can be a real pick-me-up whether you're at work or enjoying a well-earned catch up".

Images, UC QuakeStudies

A photograph of an earthquake-damaged house on Marine Parade in North Brighton. The front section of the house has collapsed, the rest buckled. The wall of the gable has also collapsed as well as part of the lower front wall. A red sticker in the window indicates that the building is unsafe to enter. A message has been spray painted on the front window, reading, "Roof tiles, $3 each". Police tape, a road cone and saw horses have been used to cordon off the house.

Images, UC QuakeStudies

A view down Manchester Street, looking south. The road is noticably buckled, and rubble from damaged buildings can be seen beyond the cordon fence. The photographer comments, "Today I ... went for a walk along the cordon to the north of Christchurch CBD which runs about one street back from Bealey Avenue. The soldiers manning the cordon seemed happy for me to take photos but I couldn't see much of the city from the barrier ... what you can see shows there's obviously a lot of damage. The roads are swollen and raised in many place. The once flat CBD will now feature plenty of hills as well as natural traffic calming features".

Images, UC QuakeStudies

The entrance to KB02, the University of Canterbury's Digital Media Group temporary office in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. The front doors. We'll need to advertise our presence once we're settled in".

Research papers, The University of Auckland Library

The performance of retrofitted unreinforced masonry (URM) bearing wall buildings in Christchurch is examined, considering ground motion recordings from multiple events. Suggestions for how the experiences in Christchurch might be relevant to retrofit practices common to New Zealand, U.S. and Canada are also provided. Whilst the poor performance of unretrofitted URM buildings in earthquakes is well known, much less is known about how retrofitted URM buildings perform when subjected to strong ground shaking.

Research papers, University of Canterbury Library

Introduction This poster presents the inferred initial performance and recovery of the water supply network of Christchurch following the 22 February 2011 Mw 6.2 earthquake. Results are presented in a geospatial and temporal fashion. This work strengthens the current understanding of the restoration of such a system after a disaster and quantifies the losses caused by this earthquake in respect with the Christchurch community. Figure 1 presents the topology of the water supply network as well as the spatial distribution of the buildings and their use.

Research papers, The University of Auckland Library

The Evaluating Maternity Units (EMU) study is a mixed method project involving a prospective cohort study, surveys (two postnatal questionnaires) and focus groups. It is an Australasian project funded by the Australian Health and Medical Research Council. Its primary aim was to compare the birth outcomes of two groups of well women – one group who planned to give birth at a primary maternity unit, and a second group who planned to give birth at a tertiary hospital. The secondary aim was to learn about women’s views and experiences regarding their birthplace decision-making, transfer, maternity care and experiences, and any other issues they raised. The New Zealand arm of the study was carried out in Christchurch, and was seriously affected by the earthquakes, halting recruitment at 702 participants. Comprehensive details were collected from both midwives and women regarding antenatal and early labour changes of birthplace plans and perinatal transfers from the primary units to the tertiary hospital. Women were asked about how they felt about plan changes and transfers in the first survey, and they were discussed in some focus groups. The transfer findings are still being analysed and will be presented. This study is set within the local maternity context, is recent, relevant and robust. It provides midwives with contemporary information about transfers from New Zealand primary maternity units and women’s views and experiences. It may help inform the conversations midwives have with each other, and with women and their families/whānau, regarding the choices of birthplace for well childbearing women.

Research papers, Victoria University of Wellington

<b>Ōtautahi-Christchurch faces the future in an enviable position. Compared to other New Zealand cities Christchurch has lower housing costs, less congestion, and a brand-new central city emerging from the rubble of the 2011 earthquakes. ‘Room to Breathe: designing a framework for medium density housing (MDH) in Ōtautahi-Christchurch’ seeks to answer the timely question how can medium density housing assist Ōtautahi-Christchurch to respond to growth in a way that supports a well-functioning urban environment? Using research by design, the argument is made that MDH can be used to support a safe, accessible, and connected urban environment that fosters community, while retaining a level of privacy. This is achieved through designing a neighbourhood concept addressing 3 morphological scales- macro- the city; meso- the neighbourhood; and micro- the home and street. The scales are used to inform a design framework for MDH specific to Ōtautahi-Christchurch, presenting a typological concept that takes full advantage of the benefits higher density living has to offer.</b> Room to Breathe proposes repurposing underutilised areas surrounding existing mass transit infrastructure to provide a concentrated populous who do not solely rely on private vehicles for transport. By considering all morphological scales Room to Breathe provides one suggestion on how MDH could become accepted as part of a well-functioning urban environment.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house on Marine Parade in North Brighton. The front section of the house has collapsed, the rest buckled. The wall of the gable has also collapsed as well as part of the lower front wall. A red sticker in the window indicates that the building is unsafe to enter. A message has been spray painted on the front window, reading, "Roof tiles, $3 each". Police tape has been used to cordon off the house. Public notices can be seen on the fence, on the roof of the collapsed section and the section behind.

Research papers, University of Canterbury Library

Background This study examines the performance of site response analysis via nonlinear total-stress 1D wave-propagation for modelling site effects in physics-based ground motion simulations of the 2010-2011 Canterbury, New Zealand earthquake sequence. This approach allows for explicit modeling of 3D ground motion phenomena at the regional scale, as well as detailed nonlinear site effects at the local scale. The approach is compared to a more commonly used empirical VS30 (30 m time-averaged shear wave velocity)-based method for computing site amplification as proposed by Graves and Pitarka (2010, 2015), and to empirical ground motion prediction via a ground motion model (GMM).

Research papers, The University of Auckland Library

As part of a seismic retrofit scheme, surface bonded glass fiber-reinforced polymer (GFRP) fabric was applied to two unreinforced masonry (URM) buildings located in Christchurch, New Zealand. The unreinforced stone masonry of Christchurch Girls’ High School (GHS) and the unreinforced clay brick masonry Shirley Community Centre were retrofitted using surface bonded GFRP in 2007 and 2009, respectively. Much of the knowledge on the seismic performance of GFRP retrofitted URM was previously assimilated from laboratory-based experimental studies with controlled environments and loading schemes. The 2010/2011 Canterbury earthquake sequence provided a rare opportunity to evaluate the GFRP retrofit applied to two vintage URM buildings and to document its performance when subjected to actual design-level earthquake-induced shaking. Both GFRP retrofits were found to be successful in preserving architectural features within the buildings as well as maintaining the structural integrity of the URM walls. Successful seismic performance was based on comparisons made between the GFRP retrofitted GHS building and the adjacent nonretrofitted Boys’ High School building, as well as on a comparison between the GFRP retrofitted and nonretrofitted walls of the Shirley Community Centre building. Based on detailed postearthquake observations and investigations, the GFRP retrofitted URM walls in the subject buildings exhibited negligible to minor levels of damage without delamination, whereas significant damage was observed in comparable nonretrofitted URM walls. AM - Accepted Manuscript

Research papers, The University of Auckland Library

The Canterbury region experienced widespread damage due to liquefaction induced by seismic shaking during the 4 September 2010 earthquake and the large aftershocks that followed, notably those that occurred on 22 February, 13 June and 23 December 2011. Following the 2010 earthquake, the Earthquake Commission directed a thorough investigation of the ground profile in Christchurch, and to date, more than 7500 cone penetration tests (CPT) have been performed in the region. This paper presents the results of analyses which use a subset of the geotechnical database to evaluate the liquefaction process as well as the re-liquefaction that occurred following some of the major events in Christchurch. First, the applicability of existing CPT-based methods for evaluating liquefaction potential of Christchurch soils was investigated using three methods currently available. Next, the results of liquefaction potential evaluation were compared with the severity of observed damage, categorised in terms of the land damage grade developed from Tonkin & Taylor property inspections as well as from observed severity of liquefaction from aerial photography. For this purpose, the Liquefaction Potential Index (LPI) was used to represent the damage potential at each site. In addition, a comparison of the CPT-based strength profiles obtained before each of the major aftershocks was performed. The results suggest that the analysis of spatial and temporal variations of strength profiles gives a clear indication of the resulting liquefaction and re-liquefaction observed in Christchurch. The comparison of a limited number of CPT strength profiles before and after the earthquakes seems to indicate that no noticeable strengthening has occurred in Christchurch, making the area vulnerable to liquefaction induced land damage in future large-scale earthquakes.

Research Papers, Lincoln University

The paper examines community benefits provided by an established community garden following a major earthquake and discusses possible implications for community garden planning and design in disaster-prone cities. Recent studies show that following extreme storm events community gardens can supply food, enhance social empowerment, provide safe gathering spots, and restorative practices, to remind people of normality. However, the beneficial role played by community gardens following earthquakes is less well known. To fill this gap, the study examines the role played by a community garden in Christchurch, New Zealand, following the 2010/2011 Canterbury Earthquakes. The garden's role is evaluated based on a questionnaire-based survey and in-depth interviews with gardeners, as well as on data regarding the garden use before and after the earthquakes. Findings indicate the garden helped gardeners cope with the post-quake situation. The garden served as an important place to de-stress, share experiences, and gain community support. Garden features that reportedly supported disaster recovery include facilities that encourage social interaction and bonding such as central meeting and lunch places and communal working areas.

Images, UC QuakeStudies

Paul Nicholls, a member of the University of Canterbury's E-Learning team, in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Closer view of our corner of the building. We will have some cubicle partitions soon, but I don't know how we'll configure the space then. It's quite nice being so open, but it may be too noisy".

Audio, UC QuakeStudies

Part one of the audio that makes up Gap Filler's 29th project, the Transitional City Audio Tour. This part of the tour begins at the Pallet Pavilion on the corner of Kilmore and Durham Streets. It includes commentary on the Crowne Plaza Hotel and the Town Hall, as well as the Captain Cook and Queen Victoria statues in Victoria Square. The tour then moves down Armagh Street to New Regent Street where there is a discussion of Trambiance, a series of sound performances in the Christchurch tram. The tour also includes commentary on the rebuild of New Regent Street and the Isaac Theatre Royal.

Research papers, University of Canterbury Library

We present the initial findings from a study of adaptive resilience of lifelines organisations providing essential infrastructure services, in Christchurch, New Zealand following the earthquakes of 2010-2011. Qualitative empirical data was collected from 200 individuals in 11 organisations. Analysis using a grounded theory method identified four major factors that aid organisational response, recovery and renewal following major disruptive events. Our data suggest that quality of top and middle-level leadership, quality of external linkages, level of internal collaboration, ability to learn from experience, and staff well-being and engagement influence adaptive resilience. Our data also suggest that adaptive resilience is a process or capacity, not an outcome and that it is contextual. Post-disaster capacity/resources and post-disaster environment influence the nature of adaptive resilience.