Search

found 2939 results

Images, UC QuakeStudies

A photograph of emergency management personnel walking in a line down Lichfield Street towards the intersection of Madras Street . The members in white hazmat suits are holding their hands over their heads while members of the New Zealand Army take the lead and follow from behind. Rubble from several earthquake-damaged buildings has scattered across the street to the right. Plastic fencing has been placed along the left side of the road as a cordon. In the background there are several earthquake-damaged buildings along Lichfield Street.

Research papers, University of Canterbury Library

Geospatial liquefaction models aim to predict liquefaction using data that is free and readily-available. This data includes (i) common ground-motion intensity measures; and (ii) geospatial parameters (e.g., among many, distance to rivers, distance to coast, and Vs30 estimated from topography) which are used to infer characteristics of the subsurface without in-situ testing. Since their recent inception, such models have been used to predict geohazard impacts throughout New Zealand (e.g., in conjunction with regional ground-motion simulations). While past studies have demonstrated that geospatial liquefaction-models show great promise, the resolution and accuracy of the geospatial data underlying these models is notably poor. As an example, mapped rivers and coastlines often plot hundreds of meters from their actual locations. This stems from the fact that geospatial models aim to rapidly predict liquefaction anywhere in the world and thus utilize the lowest common denominator of available geospatial data, even though higher quality data is often available (e.g., in New Zealand). Accordingly, this study investigates whether the performance of geospatial models can be improved using higher-quality input data. This analysis is performed using (i) 15,101 liquefaction case studies compiled from the 2010-2016 Canterbury Earthquakes; and (ii) geospatial data readily available in New Zealand. In particular, we utilize alternative, higher-quality data to estimate: locations of rivers and streams; location of coastline; depth to ground water; Vs30; and PGV. Most notably, a region-specific Vs30 model improves performance (Figs. 3-4), while other data variants generally have little-to-no effect, even when the “standard” and “high-quality” values differ significantly (Fig. 2). This finding is consistent with the greater sensitivity of geospatial models to Vs30, relative to any other input (Fig. 5), and has implications for modeling in locales worldwide where high quality geospatial data is available.

Images, UC QuakeStudies

An aerial photograph of Manchester Street near Cambridge Terrace. The photograph has been captioned by BeckerFraserPhotos, "The new Christchurch emerges - more colourful than before. The tree wrapped in high visibility is another project from artist Peter Majendie. The newly planted grass on the right hand side of the photo is on the PGC site and an adjoining site and is a CERA initiative. In the foreground of the photos the former site of St Luke's is now attractively laid out, while the splendour of the trees on the site can be fully appreciated".

Images, UC QuakeStudies

The University of Canterbury's E-Learning team's temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. Foyer lifts etc. Female toilets are off the foyer to the left. These lifts start at Level 2 of the Library, and are heavily used by students. (Once the building is repaired after the earthquake; several floors are still in a mess)".

Images, UC QuakeStudies

A view of the ICTS building at the University of Canterbury, seen from level 7 of the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. We look down on the IT Building, which is doomed. The ugly draughty IT building is going to be demolished in the next campus revamp. The 'Butterfly Building' behind, originally the mainframe computer centre, will remain, as it's architecturally significant, apparently".

Images, UC QuakeStudies

Alan Hoskin, a member of the University of Canterbury's E-Learning team, in their temporary office in the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. 700 hall with Alan. The corridor has a small seminar room at the end, and our offices on the right. To the left is the open sitting and reception area; we're trying to think of ways to make use of this".

Images, UC QuakeStudies

A sewage pumping station on Avonside Drive has been lifted out of the ground by liquefaction. In the background, the damaged Snell Place footbridge over the Avon River is closed off with cordon fencing. The photographer comments, "A Sunday afternoon ride to New Brighton, then back via Aranui, Wainoni, Dallington, and Richmond. Not a cheerful experience. Dallington footbridge. The two pieces of this foot bridge have moved towards each other, so the bridge has developed quite a peak. The sewage pumping station has been heaved out of the ground by hydraulic pressure during quakes".