The cartoon shows a rugby goalpost in a bad state of repair; it is held together with bandages and when a player kicks a ball that represents 'World Cup Games' towards the goalpost, it hits one of the side posts that flies a Christchurch flag, causing the post to break. Context - the decision that Christchurch will not be able to host any of the Rugby World Cup games because of the damage caused by the earthquakes of 4 September 2010 and 22 February 2011. Quantity: 1 digital cartoon(s).
As Auckland and Northland brace for more atrocious weather, city leaders are calling for funding to repair the city's broken infrastructure to be along the lines of the help given to Christchurch after the quakes. Auckland deputy mayor Desley Simpson says that the damage so far is equivalent to the biggest non earthquake event the country has ever had and should be treated accordingly. The Opportunities Party says the "alliance" model established after the earthquakes, was effective and would work for Auckland's rebuild, because it provides a structure that the Central Government can fund directly. ToP leader Raf Manji was a Christchurch councillor after the quakes and closely involved in the rebuild. He tells Kathryn Ryan it is vital to ensure water and transport infrastructure is repaired quickly and efficiently, especially with a view to future extreme weather events - and there is much to learn from the post-quake rebuild.
The potential for a gastroenteritis outbreak in a post-earthquake environment may increase because of compromised infrastructure services, contaminated liquefaction (lateral spreading and surface ejecta), and the presence of gastroenteritis agents in the drinking water network. A population in a post-earthquake environment might be seriously affected by gastroenteritis because it has a short incubation period (about 10 hours). The potential for a gastroenteritis outbreak in a post-earthquake environment may increase because of compromised infrastructure services, contaminated liquefaction (lateral spreading and surface ejecta), and the presence of gastroenteritis agents in the drinking water network. A population in a post-earthquake environment might be seriously affected by gastroenteritis because it has a short incubation period (about 10 hours). The aim of this multidisciplinary research was to retrospectively analyse the gastroenteritis prevalence following the February 22, 2011 earthquake in Christchurch. The first focus was to assess whether earthquake-induced infrastructure damage, liquefaction, and gastroenteritis agents spatially explained the recorded gastroenteritis cases over the period of 35 days following the February 22, 2011 earthquake in Christchurch. The gastroenteritis agents considered in this study were Escherichia coli found in the drinking water supply (MPN/100mL) and Non-Compliant Free Associated Chlorine (FAC-NC) (less than <0.02mg/L). The second focus was the protocols that averted a gastroenteritis outbreak at three Emergency Centres (ECs): Burnside High School Emergency Centre (BEC); Cowles Stadium Emergency Centre (CEC); and Linwood High School Emergency Centre (LEC). Using a mixed-method approach, gastroenteritis point prevalence and the considered factors were quantitatively analysed. The qualitative analysis involved interviewing 30 EC staff members. The data was evaluated by adopting the Grounded Theory (GT) approach. Spatial analysis of considered factors showed that highly damaged CAUs were statistically clustered as demonstrated by Moran’s I statistic and hot spot analysis. Further modelling showed that gastroenteritis point prevalence clustering could not be fully explained by infrastructure damage alone, and other factors influenced the recorded gastroenteritis point prevalence. However, the results of this research suggest that there was a tenuous, indirect relationship between recorded gastroenteritis point prevalence and the considered factors: earthquake-induced infrastructure damage, liquefaction and FAC-NC. Two ECs were opened as part of the post-earthquake response in areas with severe infrastructure damage and liquefaction (BEC and CEC). The third EC (CEC) provided important lessons that were learnt from the previous September 4, 2010 earthquake, and implemented after the February 22, 2011 earthquake. Two types of interwoven themes identified: direct and indirect. The direct themes were preventive protocols and indirect themes included type of EC building (school or a sports stadium), and EC staff. The main limitations of the research were Modifiable Areal Units (MAUP), data detection, and memory loss. This research provides a practical method that can be adapted to assess gastroenteritis risk in a post-earthquake environment. Thus, this mixed method approach can be used in other disaster contexts to study gastroenteritis prevalence, and can serve as an appendage to the existing framework for assessing infectious diseases. Furthermore, the lessons learnt from qualitative analysis can inform the current infectious disease management plans, designed for a post-disaster response in New Zealand and internationally Using a mixed-method approach, gastroenteritis point prevalence and the considered factors were quantitatively analysed. A damage profile was created by amalgamating different types of damage for the considered factors for each Census Area Unit (CAU) in Christchurch. The damage profile enabled the application of a variety of statistical methods which included Moran’s I , Hot Spot (HS) analysis, Spearman’s Rho, and Besag–York–Mollié Model using a range of software. The qualitative analysis involved interviewing 30 EC staff members. The data was evaluated by adopting the Grounded Theory (GT) approach. Spatial analysis of considered factors showed that highly damaged CAUs were statistically clustered as demonstrated by Moran’s I statistic and hot spot analysis. Further modelling showed that gastroenteritis point prevalence clustering could not be fully explained by infrastructure damage alone, and other factors influenced the recorded gastroenteritis point prevalence. However, the results of this research suggest that there was a tenuous, indirect relationship between recorded gastroenteritis point prevalence and the considered factors: earthquake-induced infrastructure damage, liquefaction and FAC-NC. Two ECs were opened as part of the post-earthquake response in areas with severe infrastructure damage and liquefaction (BEC and CEC). The third EC (CEC) provided important lessons that were learnt from the previous September 4, 2010 earthquake, and implemented after the February 22, 2011 earthquake. The ECs were selected to represent the Christchurch area, and were situated where potential for gastroenteritis was high. BEC represented the western side of Christchurch; whilst, CEC and LEC represented the eastern side, where the potential for gastroenteritis was high according to the outputs of the quantitative spatial modelling. Qualitative analysis from the interviews at the ECs revealed that evacuees were arriving at the ECs with gastroenteritis-like symptoms. Participants believed that those symptoms did not originate at the ECs. Two types of interwoven themes identified: direct and indirect. The direct themes were preventive protocols that included prolific use of hand sanitisers; surveillance; and the services offered. Indirect themes included the EC layout, type of EC building (school or a sports stadium), and EC staff. Indirect themes governed the quality and sustainability of the direct themes implemented, which in turn averted gastroenteritis outbreaks at the ECs. The main limitations of the research were Modifiable Areal Units (MAUP), data detection, and memory loss. It was concluded that gastroenteritis point prevalence following the February 22, 2011 earthquake could not be solely explained by earthquake-induced infrastructure damage, liquefaction, and gastroenteritis causative agents alone. However, this research provides a practical method that can be adapted to assess gastroenteritis risk in a post-earthquake environment. Creating a damage profile for each CAU and using spatial data analysis can isolate vulnerable areas, and qualitative data analysis provides localised information. Thus, this mixed method approach can be used in other disaster contexts to study gastroenteritis prevalence, and can serve as an appendage to the existing framework for assessing infectious diseases. Furthermore, the lessons learnt from qualitative analysis can inform the current infectious disease management plans, designed for a post-disaster response in New Zealand and internationally.
On 22 February 2011, Christchurch police sargeant Dave Harvey was outside the earthquake-damaged Hotel Grand Chancellor on Cashel Street, unsure if anyone was trapped inside. In case they were, he grabbed a can of spray paint and painted 'Help is on the way' in one-metre high letters on the road. Harvey's quick thinking really helped the people trapped in the hotel, says Clare Mackey, producer of the new documentary Help is on the Way.
The man who documented the aftermath of the Canterbury earthquakes with the film 'When A City Falls' says this week's plan for a new Christchurch CBD will forge a new path for the damaged city.
Aerial footage of Canterbury and the Christchurch central city after the 4 September 2010 earthquake. The footage shows the earthquake damage to Homebush, St John's Church in Hororata, the railway tracks near Rolleston, and Westende Jewellers on Colombo Street. It also shows flooding in the streets of New Brighton.
The Old Lyttelton Post Office, opened in 1874, showing damage after a series of earthquakes hit Christchurch and Lyttelton over the last 9 months. In the shadow of a broken house, Down a deserted street, Propt walls, cold hearths, and phantom stairs, And the silence of dead feet — Locked wildly in one another's arms I saw two lovers meet. ...
Capacity design and hierarchy of strength philosophies at the base of modern seismic codes allow inelastic response in case of severe earthquakes and thus, in most traditional systems, damage develops at well-defined locations of reinforced concrete (RC) structures, known as plastic hinges. The 2010 and 2011 Christchurch earthquakes have demonstrated that this philosophy worked as expected. Plastic hinges formed in beams, in coupling beams and at the base of columns and walls. Structures were damaged permanently, but did not collapse. The 2010 and 2011 Christchurch earthquakes also highlighted a critical issue: the reparability of damaged buildings. No methodologies or techniques were available to estimate the level of subsequent earthquakes that RC buildings could still sustain before collapse. No repair techniques capable of restoring the initial condition of buildings were known. Finally, the cost-effectiveness of an eventual repair intervention, when compared with a new building, was unknown. These aspects, added to nuances of New Zealand building owners’ insurance coverage, encouraged the demolition of many buildings. Moreover, there was a perceived strong demand from government and industry to develop techniques for assessing damage to steel reinforcement bars embedded in cracked structural concrete elements. The most common questions were: “Have the steel bars been damaged in correspondence to the concrete cracks?”, “How much plastic deformation have the steel bars undergone?”, and “What is the residual strain capacity of the damaged bars?” Minimally invasive techniques capable of quantifying the level and extent of plastic deformation and residual strain capacity are not yet available. Although some studies had been recently conducted, a validated method is yet to be widely accepted. In this thesis, a least-invasive method for the damage-assessment of steel reinforcement is developed. Based on the information obtained from hardness testing and a single tensile test, it is possible to estimate the mechanical properties of earthquake-damaged rebars. The reduction in the low-cycle fatigue life due to strain ageing is also quantified. The proposed damage assessment methodology is based on empirical relationships between hardness and strain and residual strain capacity. If damage is suspected from in situ measurements, visual inspection or computer analysis, a bar may be removed and more accurate hardness measurements can be obtained using the lab-based Vickers hardness methodology. The Vickers hardness profile of damaged bars is then compared with calibration curves (Vickers hardness versus strain and residual strain capacity) previously developed for similar steel reinforcement bars extracted from undamaged locations. Experimental tests demonstrated that the time- and temperature-dependent strain-ageing phenomenon causes changes in the mechanical properties of plastically deformed steels. In particular, yield strength and hardness increases, whereas ductility decreases. The changes in mechanical properties are quantified and their implications on the hardness method are highlighted. Low-cycle fatigue (LCF) failures of steel reinforcing bars have been observed in laboratory testing and post-earthquake damage inspections. Often, failure might not occur during a first seismic event. However, damage is accumulated and the remaining fatigue life is reduced. Failure might therefore occur in a subsequent seismic event. Although numerous studies exist on the LCF behaviour of steel rebars, no studies had been conducted on the strain-ageing effects on the remaining fatigue life. In this thesis, the reduction in fatigue life due to this phenomenon is determined through a number of experimental tests.
Photograph captioned by Fairfax, "Jade Kirk, a director of Jade/Roberts Consulting Engineers Ltd, was attacked by the operator of a 20-ton digger while trying to protect the earthquake-damaged Trinity Church on the corner of Worcester and Manchester Streets".
Photograph captioned by Fairfax, "Brett Wells, retail operations director of the Rock Shop, behind the curtain that separates the back of the shop, which they can trade from, and the front (behind Brett) that only staff can enter, after earthquake damage".
Photograph captioned by Fairfax, "Jade Kirk, a director of Jade/Roberts Consulting Engineers Ltd, was attacked by the operator of a 20-ton digger while trying to protect the earthquake-damaged Trinity Church on the corner of Worcester and Manchester Streets".
After the devastating effects on Christchurch, we are all aware of the damage earthquakes can cause. But in New Zealand, a tsunami could be just as damaging. University of Auckland engineers Asaad Shamseldin and PhD student Reza Shafiei are creating waves in the lab to work out how safe our buildings are, if a tsunami hits. Ruth Beran goes to visit them.
A video of the removal of the earthquake-damaged Medway Street bridge from the banks of the Avon River. The video shows members of the Stronger Christchurch Infrastructure Rebuild Team removing the bridge and preparing it for transport to the Ferrymead Heritage Park. It will remain at the park until a permanent home can be found for it as an earthquake memorial.
Photograph captioned by Fairfax, "Manning Intermediate pupils performing a powhiri to welcome Halswell School pupils onto the school. Halswell school was badly damaged in the September 7.1 earthquake. From left to right: Principals Bruce Topham (Halswell School) and Richard Chambers (Manning Intermediate) greet".
Photograph captioned by Fairfax, "Christchurch business U Fit In have moved from their earthquake damaged store into their co-owners' home and are trading from the lounge and spare room. Liz Robinson (L) and Angie Williams work in their temporary storeroom which is the garage".
Photograph captioned by Fairfax, "The new Christchurch Council building has suffered only cosmetic damage in the September 4th earthquake. Executive staff members whose offices are on the 5th and 6th floors now have temporary offices in the mezzanine level in the foyer".
A video of a press conference with Bishop Victoria Matthews in the Botanic Gardens about the plans for the earthquake-damaged ChristChurch Cathedral. Matthews announces that the cathedral will be deconstructed, allowing the safe retrieval of taonga and heritage items within the building.
The magnitude Mw 6.2 earthquake of February 22nd 2011 that struck beneath the city of Christchurch, New Zealand, caused widespread damage and was particularly destructive to the Central Business District (CBD). The shaking caused major damage, including collapses of structures, and initiated ground failure in the form of soil liquefaction and consequent effects such as sand boils, surface flooding, large differential settlements of buildings and lateral spreading of ground towards rivers were observed. A research project underway at the University of Canterbury to characterise the engineering behaviour of the soils in the region was influenced by this event to focus on the performance of the highly variable ground conditions in the CBD. This paper outlines the methodology of this research to characterise the key soil horizons that underlie the CBD that influenced the performance of important structures during the recent earthquakes, and will influence the performance of the rebuilt city centre under future events. The methodology follows post-earthquake reconnaissance in the central city, a desk study on ground conditions, site selection, mobilisation of a post-earthquake ground investigation incorporating the cone penetration test (CPT), borehole drilling, shear wave velocity profiling and Gel-push sampling followed by a programme of laboratory testing including monotonic and cyclic testing of the soils obtained in the investigation. The research is timely and aims to inform the impending rebuild, with appropriate information on the soils response to dynamic loading, and the influence this has on the performance of structures with various foundation forms.
Some owners of commercial buildings badly damaged in the Canterbury earthquake, have been told if they don't repair or demolish them by January the 31st, the Christchurch City Council will do it for them.
A digitally manipulated image of the Bandsmen's Memorial in Hagley Park. The photographer comments, "This memorial in Hagley Park in Christchurch can no longer be used due to large cracks at the base of most columns. This was mostly caused by the earthquake in February 2011, but later earthquakes have made the memorial even more dangerous".
Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly after 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".
Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly before 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".
Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly after 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".
Photograph captioned by Fairfax, "Christchurch Earthquake. Christchurch was rocked by a large aftershock shortly after 8am this morning. Linemen cutting power to a damaged line outside an old historic building on the corner of Montreal Street and Moorhouse Avenue which will have work done to it to try and save as much as they can".
On Tuesday 22 February 2011, a 6.3 magnitude earthquake struck Christchurch, New Zealand’s second largest city. The ‘earthquake’ was in fact an aftershock to an earlier 7.1 magnitude earthquake that had occurred on Saturday 4 September 2010. There were a number of key differences between the two events that meant they had dramatically different results for Christchurch and its inhabitants. The 22 February 2011 event resulted in one of New Zealand’s worst natural disasters on record, with 185 fatalities occurring and hundreds more being injured. In addition, a large number of buildings either collapsed or were damaged to the point where they needed to be totally demolished. Since the initial earthquake in September 2010, a large amount of building-related research has been initiated in New Zealand to investigate the impact of the series of seismic events – the major focus of these research projects has been on seismic, structural and geotechnical engineering matters. One project, however, conducted jointly by the University of Canterbury, the Fire Protection Association of New Zealand and BRANZ, has focused on the performance of fire protection systems in the earthquakes and the effectiveness of the systems in the event of post-earthquake fires occurring. Fortunately, very few fires actually broke out following the series of earthquake events in Christchurch, but fire after earthquakes still has significant implications for the built environment in New Zealand, and the collaborative research has provided some invaluable insight into the potential threat posed by post-earthquake fires in buildings. As well as summarising the damage caused to fire protection systems, this paper discusses the flow-on effect for designing structures to withstand post-earthquake fires. One of the underlying issues that will be explored is the existing regulatory framework in New Zealand whereby structural earthquake design and structural design for fire are treated as discrete design scenarios.
A damaged brick building on Tuam Street. Bricks have fallen from the wall exposing the interior, where a wooden structure can be seen to have collapsed. The photographer comments, "This is the damage caused by the numerous earthquakes in Christchurch, New Zealand. It closely resembles a face and the round blob in the square hole at the top of the nose is a pigeon".
An architect and art historian is setting up an action group to oppose the demolition of one of the most well-known churches in Christchurch, the Cathedral of the Blessed Sacrament. The church, registered as a Category 1 building with Heritage New Zealand, was damaged in the 2011 earthquakes and has sat in a state of disrepair ever since. Dr Anna Crighton is from Historic Places Aotearoa. She talks to Susie Ferguson.
Some people in Christchurch who spent last night in freezing earthquake damaged homes with no power, are backing a call from the community group Cancern for emergency shelters to be set up when the next winter storm hits.
A momentous day in Christchurch as a huge steel frame was installed as part of the stabilisation work for Christ Church Cathedral. Karyn speaks with project director Keith Paterson about the plans to return the famed rose window extensively damage in the 2011 earthquake.
A major hazard accompanying earthquake shaking in areas of steep topography is the detachment of rocks from bedrock outcrops that subsequently slide, roll, or bounce downslope (i.e. rockfalls). The 2010-2011 Canterbury earthquake sequence caused recurrent and severe rockfall in parts of southern Christchurch. Coseismic rockfall caused five fatalities and significant infrastructural damage during the 2011 Mw 6.2 Christchurch earthquake. Here we examine a rockfall site in southern Christchurch in detail using geomorphic mapping, lidar analysis, geochronology (cosmogenic 3He dating, radiocarbon dating, optically stimulated luminescence (OSL) from quartz, infrared stimulated luminescence from K-feldspar), numerical modeling of rockfall boulder trajectories, and ground motion prediction equations (GMPEs). Rocks fell from the source cliff only in earthquakes with interpolated peak ground velocities exceeding ~10 cm/s; hundreds of smaller earthquakes did not produce rockfall. On the basis of empirical observations, GMPEs and age chronologies we attribute paleo-rockfalls to strong shaking in prehistoric earthquakes. We conclude that earthquake shaking of comparable intensity to the strongest contemporary earthquakes in Christchurch last occurred at this site approximately 5000 to 7000 years ago, and that in some settings, rockfall deposits provide useful proxies for past strong ground motions.