Search

found 6322 results

Images, Alexander Turnbull Library

The cartoon shows a daffodil blooming in an earthquake fissure with the wrecked buildings of Christchurch in the background. Context: September 4th is the anniversary of the first quake. Many people in Christchurch are still living in houses that may yet be red stickered (condemned) and many city buildings are still out of bounds, either condemned to destruction or rebuilt after the earthquakes of September 4th 2010 and February 22nd and June 13th 2011. But the return of spring maybe brings a sense of encouragement and hope. Title provided by librarian Quantity: 1 digital cartoon(s).

Images, UC QuakeStudies

Liquefaction 'volcanos' in Kaiapoi, after the September 4th earthquake. Silt erupted out of the ground, piling up over the surface and leaving cracks at the mouth of the volcano.

Images, UC QuakeStudies

Liquefaction 'volcanos' in Kaiapoi, after the September 4th earthquake. Silt erupted out of the ground, piling up over the surface and leaving cracks at the mouth of the volcano.

Images, UC QuakeStudies

Liquefaction 'volcanos' in Kaiapoi, after the September 4th earthquake. Silt erupted out of the ground, piling up over the turf and leaving cracks at the mouth of the volcano.

Images, UC QuakeStudies

Liquefaction 'volcanos' in Kaiapoi, after the September 4th earthquake. Silt erupted out of the ground, piling up over the surface and leaving cracks at the mouth of the volcano.

Images, UC QuakeStudies

Liquefaction 'volcanos' in Kaiapoi, after the September 4th earthquake. Silt erupted out of the ground, piling up over the surface and leaving cracks at the mouth of the volcano.

Images, UC QuakeStudies

Liquefaction 'volcanos' in Kaiapoi, after the September 4th earthquake. Silt erupted out of the ground, piling up over the surface and leaving cracks at the mouth of the volcano.

Images, UC QuakeStudies

Liquefaction 'volcanos' in Kaiapoi, after the September 4th earthquake. Silt erupted out of the ground, piling up over the surface and leaving cracks at the mouth of the volcano.

Research papers, University of Canterbury Library

The Leader Fault was one of at least 17 faults that ruptured the ground surface across the northeastern South Island of New Zealand during the Mw 7.8 2016 Kaikōura Earthquake. The southern ~6 km of the Leader Fault, here referred to as the South Leader Fault (SLF), ruptured the North Canterbury (tectonic) Domain and is the primary focus of this study. The main objective of the thesis is to understand the key factors that contributed to the geometry and kinematics of the 2016 SLF rupture and its intersection with The Humps Fault (HF). This thesis employs a combination of techniques to achieve the primary objective, including detailed mapping of the bedrock geology, geomorphology and 2016 rupture, measurement of 2016 ground surface displacements, kinematic analysis of slip vectors from the earthquake, and logging of a single natural exposure across a 2016 rupture that was treated as a paleoseismic trench. The resulting datasets were collected in the field, from terrestrial LiDAR and InSAR imagery, and from historical (pre-earthquake) aerial photographs for a ~11 km2 study area. Surface ruptures in the study area are a miniature version of the entire rupture from the earthquake; they are geometrically and kinematically complex, with many individual and discontinuous segments of varying orientations and slip senses which are distributed across a zone up to ~3.5 km wide. Despite this variability, three main groups of ruptures have been identified. These are: 1) NE-SW striking, shallow to moderate dipping (25-45°W) faults that are approximately parallel to Cenozoic bedding with mainly reverse dip-slip and, and for the purposes of this thesis, are considered to be part of the SLF. 2) N-S striking, steeply dipping (~85°E) oblique sinistral faults that are up to the west and part of the SLF. 3) E-NE striking, moderate to steeply dipping (45-68°N) dextral reverse faults which are part of the HF. Bedding-parallel faults are interpreted to be flexural slip structures formed during folding of the near-surface Cenozoic strata, while the steeply dipping SLF ruptured a pre-existing bedrock fault which has little topographic expression. Groups 1 and 2 faults were both locally used for gravitational failure during the earthquake. Despite this non-tectonic fault movement, the slip vectors for faults that ruptured during the earthquake are broadly consistent with NCD tectonics and the regional ~100-120° trend of the principal horizontal stress/strain axes. Previous earthquake activity on the SLF is required by its displacement of Cenozoic formations but Late Quaternary slip on the fault prior to 2016 is neither supported by pre-existing fault scarps nor by changes in topography across the fault. By contrast, at least two earthquakes (including 2016) appear to have ruptured the HF from the mid Holocene, consistent with recurrence intervals of no more than ~7 kyr, and with preliminary observations from trenches on the fault farther to the west. The disparity in paleoearthquake records of the two faults suggests that they typically do not rupture together, thus it is concluded that the HF-SLF rupture pattern observed in the Kaikōura Earthquake rarely occurs in a single earthquake.

Audio, Radio New Zealand

Some Canterbury homeowners are worried that missed earthquake damage to concrete slabs could result in another big bill for the taxpayer. This comes only weeks after EQC told Checkpoint that the cost of mis-scoped damage or defective repairs following the Canterbury earthquakes could cost up to $1 billion. This includes $450 million for botched repairs, including badly repaired rubble ring foundations, and $300 million for an ex gratia payment to about 1000 over-cap onsold homeowners. But some Canterbury homeowners who bought after the earthquakes - and did their due diligence - are only discovering damage to their concrete slab foundations now. Logan Church reports.