Search

found 2110 results

Images, UC QuakeStudies

A photograph of the rubble of the Observatory tower in the South Quad of the Christchurch Arts Centre. The tower collapsed during the 22 February 2011 earthquake. A digger was used to clear the rubble away from the building.

Research papers, University of Canterbury Library

1. INTRODUCTION. Earthquakes and geohazards, such as liquefaction, landslides and rock falls, constitute a major risk for New Zealand communities and can have devastating impacts as the Canterbury 2010/2011 experience shows. Development patterns expose communities to an array of natural hazards, including tsunamis, floods, droughts, and sea level rise amongst others. Fostering community resilience is therefore vitally important. As the rhetoric of resilience is mainstreamed into the statutory framework, a major challenge emerges: how can New Zealand operationalize this complex and sometimes contested concept and build ‘community capitals’? This research seeks to provide insights to this question by critically evaluating how community capitals are conceptualized and how they can contribute to community resilience in the context of the Waimakariri District earthquake recovery and regeneration process.

Images, UC QuakeStudies

A photograph of the lens of the Townsend Telescope. The lens is the most crucial component of the telescope. Despite damage to the surrounding parts, the lens was unharmed during the 22 February 2011 earthquake. Because of this, the telescope can be restored.

Research papers, University of Canterbury Library

The 2010-2011 Christchurch earthquakes generated damage in several Reinforced Concrete (RC) buildings, which had RC walls as the principal resistant element against earthquake demand. Despite the agreement between structural engineers and researchers in an overall successfully performance there was a lack of knowledge about the behaviour of the damaged structures, and even deeper about a repaired structure, which triggers arguments between different parties that remains up to these days. Then, it is necessary to understand the capacity of the buildings after the earthquake and see how simple repairs techniques improve the building performance. This study will assess the residual capacity of ductile slender RC walls according to current standards in New Zealand, NZS 3101.1 2006 A3. First, a Repaired RC walls Database is created trying to gather previous studies and to evaluate them with existing international guidelines. Then, an archetype building is designed, and the wall is extracted and scaled. Four half-scale walls were designed and will be constructed and tested at the Structures Testing Laboratory at The University of Auckland. The overall dimensions are 3 [m] height, 2 [m] length and 0.175 [m] thick. All four walls will be identical, with differences in the loading protocol and the presence or absence of a repair technique. Results are going to be useful to assess the residual capacity of a damaged wall compare to the original behaviour and also the repaired capacity of walls with simpler repair techniques. The expected behaviour is focussed on big changes in stiffness, more evident than in previously tested RC beams found in the literature.

Images, UC QuakeStudies

Labour Party leader Phil Goff speaking to members of the Student Volunteer Army in the UCSA car park outside the UCSA's "Big Top" tent. The tent was erected to provide support for students at the University of Canterbury in the aftermath of the 22 February 2011 earthquake.

Articles, UC QuakeStudies

An article from the Media Studies Journal of Aotearoa New Zealand Volume 14, Number 1. The article is titled, "Against the Odds: community access radio broadcasting during the Canterbury earthquakes, some reflections on Plains FM 96.9". It was written by Brian Pauling and Nicki Reece.

Images, UC QuakeStudies

A photograph of the rubble of the Observatory tower in the South Quad of the Christchurch Arts Centre. The tower collapsed during the 22 February 2011 earthquake. Scaffolding constructed around the tower has also collapsed and is amongst the rubble.

Images, UC QuakeStudies

A sign outside Lyttelton's grassy market on Oxford Street reading "Join us for a chat". This sign was placed by members of the Lyttelton community who were stitching felt hearts to hand out to members of the public. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal mesh sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a snapshot of the performed experimental program and the test results and a preliminary proposed pull-out capacity of adhesive anchors are presented herein. http://www.confer.co.nz/nzsee/ VoR - Version of Record

Images, UC QuakeStudies

An image from a Army News March 2011 article titled, "An Army Being Led to Win". The image shows Defence Force personnel during an operational tour of Lyttelton taken by Commander Joint Forces, Air Marshal Peter Stockwell and Chief of Army Tim Keating to view the aftermath of the Christchurch Earthquake. In the background, the HMNZS Canterbury can be seen.

Images, UC QuakeStudies

Jess Hollis, a member of the University of Canterbury's E-Learning team in their temporary office in the James Hight building. The photographer comments, "Yet another change of workplace for our E-Learning group, as the University juggles people and buildings to carry out earthquake repairs. My desk with Jess behind".

Images, UC QuakeStudies

Jess Hollis, a member of the University of Canterbury's E-Learning team in their temporary office in the James Hight building. The photographer comments, "Yet another change of workplace for our E-Learning group, as the University juggles people and buildings to carry out earthquake repairs. Jess, with my desk behind".

Research papers, University of Canterbury Library

Natural catastrophes are increasing worldwide. They are becoming more frequent but also more severe and impactful on our built environment leading to extensive damage and losses. Earthquake events account for the smallest part of natural events; nevertheless seismic damage led to the most fatalities and significant losses over the period 1981-2016 (Munich Re). Damage prediction is helpful for emergency management and the development of earthquake risk mitigation projects. Recent design efforts focused on the application of performance-based design engineering where damage estimation methodologies use fragility and vulnerability functions. However, the approach does not explicitly specify the essential criteria leading to economic losses. There is thus a need for an improved methodology that finds the critical building elements related to significant losses. The here presented methodology uses data science techniques to identify key building features that contribute to the bulk of losses. It uses empirical data collected on site during earthquake reconnaissance mission to train a machine learning model that can further be used for the estimation of building damage post-earthquake. The first model is developed for Christchurch. Empirical building damage data from the 2010-2011 earthquake events is analysed to find the building features that contributed the most to damage. Once processed, the data is used to train a machine-learning model that can be applied to estimate losses in future earthquake events.

Images, UC QuakeStudies

A photograph of parts of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A close-up photograph of parts of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Research papers, The University of Auckland Library

The Canterbury earthquake sequence of 2010-2011 wrought ruptures in not only the physical landscape of Canterbury and Christchurch’s material form, but also in its social, economic, and political fabrics and the lives of Christchurch inhabitants. In the years that followed, the widespread demolition of the CBD that followed the earthquakes produced a bleak landscape of grey rubble punctuated by damaged, abandoned buildings. It was into this post-earthquake landscape that Gap Filler and other ‘transitional’ organisations inserted playful, creative, experimental projects to bring life and energy back into the CBD. This thesis examines those interventions and the development of the ‘Transitional Movement’ between July 2013 and June 2015 via the methods of walking interviews and participant observation. This critical period in Christchurch’s recovery serves as an example of what happens when do-it-yourself (DIY) urbanism is done at scale across the CBD and what urban experimentation can offer city-making. Through an understanding of space as produced, informed by Lefebvre’s thinking, I explore how these creative urban interventions manifested a different temporality to orthodox planning and demonstrate how the ‘soft’ politics of these interventions contain the potential for gentrification and also a more radical politics of the city, by creating an opening space for difference.

Research papers, University of Canterbury Library

Overview of SeisFinder SeisFinder is an open-source web service developed by QuakeCoRE and the University of Canterbury, focused on enabling the extraction of output data from computationally intensive earthquake resilience calculations. Currently, SeisFinder allows users to select historical or future events and retrieve ground motion simulation outputs for requested geographical locations. This data can be used as input for other resilience calculations, such as dynamic response history analysis. SeisFinder was developed using Django, a high-level python web framework, and uses a postgreSQL database. Because our large-scale computationally-intensive numerical ground motion simulations produce big data, the actual data is stored in file systems, while the metadata is stored in the database. The basic SeisFinder architecture is shown in Figure 1.

Articles, UC QuakeStudies

A digital photograph in PDF format with caption. Image from the inside of a Red Zoned home in the Horseshoe Lake area. Image depicts the dining area where a poem had been written on the walls by a member of the family. Poem talks about the earthquake, living in Horseshoe Lake, and being Red Zoned and what that means.

Research papers, University of Canterbury Library

Abstract This study provides a simplified methodology for pre-event data collection to support a faster and more accurate seismic loss estimation. Existing pre-event data collection frameworks are reviewed. Data gathered after the Canterbury earthquake sequences are analysed to evaluate the relative importance of different sources of building damage. Conclusions drawns are used to explore new approaches to conduct pre-event building assessment.

Images, UC QuakeStudies

A photograph of the largest section of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A close-up photograph of parts of the Townsend Telescope recovered from the rubble of the Observatory tower. The telescope was housed in the tower at the Christchurch Arts Centre. It was severely damaged when the tower collapsed during the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of the earthquake damage to the second story of the Observatory tower at the Christchurch Arts Centre. The front of the storey has collapsed, exposing the inside. A tarpaulin has been draped over the top and the roof of the building behind.