Search

found 4850 results

Research papers, University of Canterbury Library

Deep shear wave velocity (Vs) profiles (>400 m) were developed at 14 sites throughout Christchurch, New Zealand using surface wave methods. This paper focuses on the inversion of surface wave data collected at one of these sites, Hagley Park. This site is located on the deep soils of the Canterbury Plains, which consist of alluvial gravels inter-bedded with estuarine and marine sands, silts, clays and peats. Consequently, significant velocity contrasts exist at the interface between geologic formations. In order to develop realistic velocity models in this complex geologic environment, a-priori geotechnical and geologic data were used to identify the boundaries between geologic formations. This information aided in developing the layering for the inversion parameters. Moreover, empirical reference Vs profiles based on material type and confining pressure were used to develop realistic Vs ranges for each layer. Both the a-priori layering information and the reference Vs curves proved to be instrumental in generating realistic velocity models that account for the complex inter-bedded geology in the Canterbury Plains.

Research papers, Lincoln University

The Building Act 2004 now requires Territorial Authorities (TAs) to have in place a policy setting out how they intend making existing buildings that would be unable to withstand a moderate earthquake safe for their occupiers. Many of the resultant policies developed by TAs have put in place mandatory upgrade requirements that will force owners to expend large amounts of capital on seismic upgrading of their buildings. The challenge for the property owners and TAs alike is to make such development work economic or the result will be wide scale demolition of old buildings. This has serious implications for both heritage conservation and inner city revitalisation plans that are based on existing heritage buildings. This paper sets out the issues and challenges for the seismic upgrading of buildings in New Zealand and puts forward some potential solutions