Search

found 312 results

Articles, Christchurch uncovered

Recently, Peter Mitchell, one of our building archaeology specialists, recorded a 19th century residential dwelling just on the edge of Christchurch’s Central City. This dwelling was similar in form and function to others we have seen in Canterbury – it … Continue reading →

Images, UC QuakeStudies

An artist's impression of an installation that forms part of the '60 Lights Market' at the LUXCITY event. Coordinators: Daniele Abreu e Lima and Sam Stringlen; students: Chi Tran, Aria Jansen, Naomi Snelling, Rebecca Wyborn

Images, UC QuakeStudies

An artist's impression of an installation that forms part of the '60 Lights Market' at the LUXCITY event. Coordinators: Daniele Abreu e Lima and Michael Smith; students: Alex Heperi, Gagan Saini, Shamal Nanji, Xavier Apelinga

Images, UC QuakeStudies

A photograph of Danica Nel and other workers standing in line with their authorization forms for the Residential Access Project. The project gave residents temporary access within the red-zone cordon in order to retrieve items from their homes after the 22 February 2011 earthquake.

Audio, Radio New Zealand

Plumbers say EQC paying bills too slowly, Earthquake Commission defends its claim process, Events centre, not stimulus package, for West Coast, Harawira calls meeting to consider forming new party, Government, Auckland council split over development, Search work in Christchurch central city nears completion, Power in South Christchurch threatened by cut cable.

Images, UC QuakeStudies

The word 'faith' has been formed by flowers on the cordon fence beside St John the Baptist Church on Latimer Square. The photographer comments, "If I remember correctly this has been on the fence surrounding the Christchurch earthquake red zone for quite a while and looks remarkably pristine".

Research Papers, Lincoln University

The timing of large Holocene prehistoric earthquakes is determined by dated surface ruptures and landslides at the edge of the Australia-Pacific plate boundary zone in North Canterbury, New Zealand. Collectively, these data indicate two large (M > 7) earthquakes during the last circa 2500 years, within a newly formed zone of hybrid strike-slip and thrust faulting herein described as the Porter's Pass-to-Amberley Fault Zone (PPAFZ). Two earlier events during the Holocene are also recognized, but the data prior to 2500 years are presumed to be incomplete. A return period of 1300–2000 years between large earthquakes in the PPAFZ is consistent with a late Holocene slip rate of 3–4 mm/yr if each displacement is in the range 4–8 m. Historical seismicity in the PPAFZ is characterized by frequent small and moderate magnitude earthquakes and a seismicity rate that is identical to a region surrounding the structurally mature Hope fault of the Marlborough Fault System farther north. This is despite an order-of-magnitude difference in slip rate between the respective fault zones and considerable differences in the recurrence rate of large earthquakes. The magnitude-frequency distribution in the Hope fault region is in accord with the characteristic earthquake model, whereas the rate of large earthquakes in the PPAFZ is approximated (but over predicted) by the Gutenberg-Richter model. The comparison of these two fault zones demonstrates the importance of the structural maturity of the fault zone in relation to seismicity rates inferred from recent, historical, and paleoseismic data.

Research papers, Victoria University of Wellington

For some people, religion, spirituality and faith (RSF) serves an important function, helping them deal with difficult everyday life challenges. This qualitative ethnographic study examines how and in what ways a group of Cantabrians engaged with RSF in dealing with diverse forms of significant trauma – from moments of crisis through to more extended processes of recovery. The research is located within the context of post-earthquake Christchurch, and is based on fieldwork undertaken in 2012–2013. It explores the experiences of respondents representing traditional Christian and non-orthodox, non-Christian faith paths. The thesis draws on data from participant stories to emphasise the subjective experience of RSF and trauma. It argues that in times of crisis, some people draw on RSF to help them address difficult life challenges. The study demonstrates the breadth, diversity and significance of such resourcing, as well as the sometimes surprising, unanticipated forms that this engagement with RSF may take. Contrary to theories that emphasise the marginalisation of religion during times of intense distress, the thesis shows that in varying moments of crisis, people for whom RSF is important, may draw on diverse forms of RSF as a matter of priority to help them.

Other, National Library of New Zealand

Discusses the history, purpose and the structure of the organisation. Also provides links to regional branches, news, newsletters, rural jobs- a resource for prospective employers and employees and resources such as guides, reports and contract and agreement forms. Earthquake related information can be found in the archived instances from September 2010-

Audio, Radio New Zealand

Canterbury schools to stay closed until Monday, Earthquake family tries to comfort traumatised children, Christchurch welfare centres start filling up, Independent Australian MPs back Labor, Universities raise fees to maximum, MPs in Parliament pay tribute to people of Canterbury, Prime Minister speaks from Christchurch, and Julia Gillard speaks about the newly formed government.

Research papers, University of Canterbury Library

Rock mass defect controlled deep-seated landslides are widespread within the deeply incised landscapes formed in Tertiary soft rock terrain in New Zealand. The basal failure surfaces of deep-seated slope failures are defined by thin, comparatively weak and laterally continuous bedding parallel layers termed critical stratigraphic horizons. These horizons have a sedimentary origin and have typically experienced some prior tectonically induced shear displacement at the time of slope failure. The key controls on the occurrence and form of deep-seated landslides are considered in terms of rock mass defect properties and tectonic and climatic forcing. The selection of two representative catchments (in southern Hawke's Bay and North Canterbury) affected by tectonic and climatic forcing has shown that the spatial and temporal initiation of deep-seated bedrock landslides in New Zealand Tertiary soft rock terrain is a predictable rather than a stochastic process; and that deep-seated landslides as a mass wasting process have a controlling role in landscape evolution in many catchments formed in Tertiary soft rock terrain. The Ella Landslide in North Canterbury is a deep-seated (~85 m) translational block slide that has failed on a 5 - 10 mm thick, kaolinite-rich, pre-sheared critical stratigraphic horizon. The residual strength of this sedimentary horizon, (C'R 2.6 - 2.7 kPa, and Ѳ'R = 16 - 21°), compared to the peak strength of the dominant lithology (C' = 176 kPa, and Ѳ' = 37°) defines a high strength contrast in the succession, and therefore a critical location for the basal failure surface of deep-seated slope failures. The (early to mid Holocene) Ella Landslide debris formed a large landslide dam in the Kate Stream catchment and this has significantly retarded rates of mass wasting in the middle catchment. Numerical stability analysis shows that this slope failure would have most likely required the influence of earthquake induced strong ground motion and the event is tentatively correlated to a Holocene event on the Omihi Fault. The influence of this slope failure is likely to affect the geomorphic development of the catchment on a scale of 10⁴ - 10⁵ years. In deeply incised catchments at the southeastern margin of the Maraetotara Plateau, southern Hawke's Bay, numerous widespread deep-seated landslides have basal failure surfaces defined by critical stratigraphic horizons in the form of thin « 20 mm) tuffaceous beds in the Makara Formation flysch (alternating sandstone and mudstone units). The geometry of deep-seated slope failures is controlled by these regularly spaced (~70 m), very weak critical stratigraphic horizons (C'R 3.8 - 14.2 kPa, and Ѳ'R = 2 - 5°), and regularly spaced (~45 m) and steeply dipping (-50°) critical conjugate joint/fault sets, which act as slide block release surfaces. Numerical stability analysis and historical precedent show that the temporal initiation of deep-seated landslides is directly controlled by short term tectonic forcing in the form of periodic large magnitude earthquakes. Published seismic hazard data shows the recurrence interval of earthquakes producing strong ground motions of 0.35g at the study site is every 150 yrs, however, if subduction thrust events are considered the level of strong ground motion may be much higher. Multiple occurrences of deep-seated slope failure are correlated to failure on the same critical stratigraphic horizon, in some cases in three adjacent catchments. Failure on multiple critical stratigraphic horizons leads to the development of a "stepped" landscape morphology. This slope form will be maintained during successive accelerated stream incision events (controlled by long term tectonic and climatic forcing) for as long as catchments are developing in this specific succession. Rock mass defect controlled deep seated landslides are controlling catchment head progression, landscape evolution and hillslope morphology in the Hawke's Bay study area and this has significant implications for the development of numerical landscape evolution models of landscapes formed in similar strata. Whereas the only known numerical model to consider deep seated landslides as an erosion process (ZSCAPE) considers them as stochastic in time and space, this study shows that this could not be applied to a landscape where the widespread spatial occurrence of deep-seated landslides is controlled by rock mass defects. In both of the study areas for this project, and by implication in many catchments in Tertiary soft rock terrain, deep-seated landslides controlled by rock mass defect strength, spacing and orientation, and tectonic and climatic forcing have an underlying control on landscape evolution. This study quantifies parameters for the development of numerical landscape evolution models that would assess the role of specific parameters, such as uplift rates, incision rates and earthquake recurrence in catchment evolution in Tertiary soft rock terrain.

Images, UC QuakeStudies

A pile of liquefaction silt in Parklands has been decorated with a Santa hat, Christmas decorations and a pair of jandals to form a silt 'snowman'. The photographer comments, "Not the most welcome Santa to find on your doorstep on Xmas Eve. This was made out of damp liquefaction in Parklands".

Images, Canterbury Museum

One limited edition poster with tube and information sheet. The poster has initial letters of the cities of New Zealand arranged to form an outline of the country. All are printed in black, except the 'C' of Christchurch which stands out in red. "United We Stand, 22 Feb 2011, 12.51pm" is printed in black. Poster commemorates the 2011 Christchurc...

Research Papers, Lincoln University

This report reviews the literature on regeneration requirements of main canopy tree species in Westland. Forests managed for production purposes have to be harvested in an ecologically sustainable way; to maintain their natural character, harvesting should facilitate regeneration of target species and ensure that their recruitment is in proportion to the extent of extraction. The reasons for species establishing at any point in time are unclear; however, they are probably related to the availability of suitable microsites for establishment, the size of the canopy openings formed by disturbance, and whether or not seeds are available at or around the time of the disturbance. Age structures from throughout Westland show that extensive, similar-aged, post-earthquake cohorts of trees are a feature of the region. This suggests that infrequent, massive earthquakes are the dominant coarse-scale disturbance agent, triggering episodes of major erosion and sedimentation and leaving a strong imprint in the forest structure. In other forests, flooding and catastrophic windthrow are major forms of disturbance. The findings suggest that, in general, large disturbances are required for conifer regeneration. This has implications for any sustained yield management of these forests if conifers are to remain an important component. Any harvesting should recognise the importance for tree establishment of: forest floor microsites, such as fallen logs and tree tip-up mounds; and the variable way in which canopy gaps are formed. Harvesting should maintain the 'patchy' nature of the natural forest—large patches of dense conifers interspersed with more heterogeneous patches of mixed species.This is a client report commissioned by West Coast Conservancy and funded from the Unprogrammed Science Advice fund.

Research papers, University of Canterbury Library

In the last century, seismic design has undergone significant advancements. Starting from the initial concept of designing structures to perform elastically during an earthquake, the modern seismic design philosophy allows structures to respond to ground excitations in an inelastic manner, thereby allowing damage in earthquakes that are significantly less intense than the largest possible ground motion at the site of the structure. Current performance-based multi-objective seismic design methods aim to ensure life-safety in large and rare earthquakes, and to limit structural damage in frequent and moderate earthquakes. As a result, not many recently built buildings have collapsed and very few people have been killed in 21st century buildings even in large earthquakes. Nevertheless, the financial losses to the community arising from damage and downtime in these earthquakes have been unacceptably high (for example; reported to be in excess of 40 billion dollars in the recent Canterbury earthquakes). In the aftermath of the huge financial losses incurred in recent earthquakes, public has unabashedly shown their dissatisfaction over the seismic performance of the built infrastructure. As the current capacity design based seismic design approach relies on inelastic response (i.e. ductility) in pre-identified plastic hinges, it encourages structures to damage (and inadvertently to incur loss in the form of repair and downtime). It has now been widely accepted that while designing ductile structural systems according to the modern seismic design concept can largely ensure life-safety during earthquakes, this also causes buildings to undergo substantial damage (and significant financial loss) in moderate earthquakes. In a quest to match the seismic design objectives with public expectations, researchers are exploring how financial loss can be brought into the decision making process of seismic design. This has facilitated conceptual development of loss optimisation seismic design (LOSD), which involves estimating likely financial losses in design level earthquakes and comparing against acceptable levels of loss to make design decisions (Dhakal 2010a). Adoption of loss based approach in seismic design standards will be a big paradigm shift in earthquake engineering, but it is still a long term dream as the quantification of the interrelationships between earthquake intensity, engineering demand parameters, damage measures, and different forms of losses for different types of buildings (and more importantly the simplification of the interrelationship into design friendly forms) will require a long time. Dissecting the cost of modern buildings suggests that the structural components constitute only a minor portion of the total building cost (Taghavi and Miranda 2003). Moreover, recent research on seismic loss assessment has shown that the damage to non-structural elements and building contents contribute dominantly to the total building loss (Bradley et. al. 2009). In an earthquake, buildings can incur losses of three different forms (damage, downtime, and death/injury commonly referred as 3Ds); but all three forms of seismic loss can be expressed in terms of dollars. It is also obvious that the latter two loss forms (i.e. downtime and death/injury) are related to the extent of damage; which, in a building, will not just be constrained to the load bearing (i.e. structural) elements. As observed in recent earthquakes, even the secondary building components (such as ceilings, partitions, facades, windows parapets, chimneys, canopies) and contents can undergo substantial damage, which can lead to all three forms of loss (Dhakal 2010b). Hence, if financial losses are to be minimised during earthquakes, not only the structural systems, but also the non-structural elements (such as partitions, ceilings, glazing, windows etc.) should be designed for earthquake resistance, and valuable contents should be protected against damage during earthquakes. Several innovative building technologies have been (and are being) developed to reduce building damage during earthquakes (Buchanan et. al. 2011). Most of these developments are aimed at reducing damage to the buildings’ structural systems without due attention to their effects on non-structural systems and building contents. For example, the PRESSS system or Damage Avoidance Design concept aims to enable a building’s structural system to meet the required displacement demand by rocking without the structural elements having to deform inelastically; thereby avoiding damage to these elements. However, as this concept does not necessarily reduce the interstory drift or floor acceleration demands, the damage to non-structural elements and contents can still be high. Similarly, the concept of externally bracing/damping building frames reduces the drift demand (and consequently reduces the structural damage and drift sensitive non-structural damage). Nevertheless, the acceleration sensitive non-structural elements and contents will still be very vulnerable to damage as the floor accelerations are not reduced (arguably increased). Therefore, these concepts may not be able to substantially reduce the total financial losses in all types of buildings. Among the emerging building technologies, base isolation looks very promising as it seems to reduce both inter-storey drifts and floor accelerations, thereby reducing the damage to the structural/non-structural components of a building and its contents. Undoubtedly, a base isolated building will incur substantially reduced loss of all three forms (dollars, downtime, death/injury), even during severe earthquakes. However, base isolating a building or applying any other beneficial technology may incur additional initial costs. In order to provide incentives for builders/owners to adopt these loss-minimising technologies, real-estate and insurance industries will have to acknowledge the reduced risk posed by (and enhanced resilience of) such buildings in setting their rental/sale prices and insurance premiums.

Research papers, Victoria University of Wellington

Wellington is located on a fault line which will inevitably, one day be impacted by a big earthquake. Due to where this fault line geographically sits, the central city and southern suburbs may be cut off from the rest of the region, effectively making these areas an ‘island’. This issue has absorbed a lot of attention, in particular at a large scale by many different fields: civil engineering, architecture, infrastructure planning & design, policymaking.  Due to heightened awareness, and evolved school of practice, contemporary landscape architects deal with post-disaster design – Christchurch, NZ has seen this. A number of landscape architects work with nature, following increased application of ecological urbanism, and natural systems thinking, most notably at larger scales.  To create parks that are designed to flood, or implement projects to protect shorelines. A form of resilience less often considered is how design for the small scale - people’s 1:1 relationship with their immediate context in exterior space - can be influential in forming a resilient response to the catastrophe of a major earthquake. This thesis intends to provide a response to address the shift of scales, as a paradigm for preparation and recovery.  After a large-scale earthquake, state and civic policies and agencies may or subsequentially not go into action. The most important thinking and acting will be what happens in the minds, and the immediate needs, of each and every person; and how they act communally. This is considered in general social terms in state and civic education programmes of civil defence, for example, but much less considered in how the physical design of the actual spaces we inhabit day-to-day can educate us to be mentally prepared to help each other survive a catastrophe. Specifically, the identification of design of typologies can provide these educative functions.  Typology inherently a physical form or manipulation of a generic and substantial prototype applicable in contexts is something that exists in the mind. Working with the physical and social appearance and experience of typologies can also/will change people’s minds.  Socially, and economically driven, the community-building power of community gardening is well-proven and documented, and a noticeably large part of contemporary landscape architecture. The designs of this thesis will focus on community gardening specifically to form typologies of resilience preparation and response to disaster. The foundation will remain at the small scale of the local community. The specific question this thesis poses: Can we design local typologies in landscape architecture to integrate community gardens, with public space by preparing for and acting as recovery from a disaster?