A video clip depicting a large, inflatable white ball being rolled through the intersection of High Street, Lichfield Street and Manchester Street. The ball was part of an installation for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
This paper concerns the explicit consideration of near-fault directivity in conventional ground motion prediction models, and its implication for probabilistic seismic hazard analysis (PSHA) in New Zealand. The proposed approach utilises recently developed models by Shahi & Baker (2011), which account for both the 'narrowband' nature of the directivity pulse on spectral ordinates, and the probability of pulse occurrence at the site of interest. Furthermore, in order to correctly consider directivity, distributed seismicity sources are considered as finite-faults, as opposed to their (incorrect) conventional treatment as point-sources. The significance of directivity on hazard analysis results is illustrated for various vibration periods at generic sites located in Christchurch and Otira, two locations whose seismic hazard is comprised of notably different seismic sources. When compared to the PSHA results considering directivity and distributed seismicity as finite faults, it is shown that the NZS1170.5:2004 directivity factor is notably unconservative for all vibration periods in Otira (i.e. high seismic hazard region); and unconservative for Christchurch at short-to-moderate vibration periods ( < 3s); but conservative at long periods ( > 4s).
A video clip of young children interacting with a large-scale, temporary installation titled Orbis. The installation is on Lichfield Street. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of people interacting with a large-scale, temporary installation titled Orbis. The installation is on Lichfield Street. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled ING. The installation is at the intersection of High Street, Lichfield Street and Manchester Street. The installation was created by students from Unitec, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled ING. The installation is at the intersection of High Street, Lichfield Street and Manchester Street. The installation was created by students from Unitec, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled Synthesis. The installation is on the corner of High Street and Lichfield Street. The installation was created by students from CPIT for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip showing close up footage of a cake stand, which was part of a large-scale, temporary installation titled Antigravity. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A close-up photograph of plastic bottles that were part of a temporary installation titled ING. ING was created by students from Unitec for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled ING. The installation is at the intersection of High Street, Lichfield Street and Manchester Street. The installation was created by students from Unitec, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled ING. The installation is at the intersection of High Street, Lichfield Street and Manchester Street. The installation was created by students from Unitec, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled ING. The installation is at the intersection of High Street, Lichfield Street and Manchester Street. The installation was created by students from Unitec, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip depicting part of a large-scale, temporary installation titled Continuum, and another in the distance titled Upload. The installations were created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip showing close-up footage of a large-scale, temporary installation titled Antigravity. The installation is on Lichfield Street. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled Synthesis. The installation is on the corner of High Street and Lichfield Street. The installation was created by students from CPIT for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled ING. The installation is at the intersection of High Street, Lichfield Street and Manchester Street. The installation was created by students from Unitec, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled ING. The installation is at the intersection of High Street, Lichfield Street and Manchester Street. The installation was created by students from Unitec, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of a large-scale, temporary installation titled ING. The installation is at the intersection of High Street, Lichfield Street and Manchester Street. The installation was created by students from Unitec, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of people interacting with a large-scale, temporary installation titled Orbis. The installation is on Lichfield Street. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip of people walking past a large-scale, temporary installation titled Antigravity. The installation is on Lichfield Street. The installation was created by students from The University of Auckland for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
Deformational properties of soil, in terms of modulus and damping, exert a great influence on seismic response of soil sites. However, these properties for sands containing some portion of fines particles have not been systematically addressed. In addition, simultaneous modelling of the modulus and damping behaviour of soils during cyclic loading is desirable. This study presents an experimental and computational investigation into the deformational properties of sands containing fines content in the context of site response analysis. The experimental investigation is carried on sandy soils sourced from Christchurch, New Zealand using a dynamic triaxial apparatus while the computational aspect is based on the framework of total-stress one-dimensional (1D) cyclic behaviour of soil. The experimental investigation focused on a systematic study on the deformational behaviour of sand with different amounts of fines content (particle diameter ≤ 75µm) under drained conditions. The silty sands were prepared by mixing clean sand with three different percentages of fines content. A series of bender element tests at small-strain range and stress-controlled dynamic triaxial tests at medium to high-strain ranges were conducted on samples of clean sand and silty sand. This allowed measurements of linear and nonlinear deformational properties of the same specimen for a wide strain range. The testing program was designed to quantify the effects of void ratio and fines content on the low-strain stiffness of the silty sand as well as on the nonlinear stress-strain relationship and corresponding shear modulus and damping properties as a function of cyclic shear strains. Shear wave velocity, Vs, and maximum shear modulus, Gmax, of silty sand was shown to be significantly smaller than the respective values for clean sands measured at the same void ratio, e, or same relative density, Dr. However, the test results showed that the difference in the level of nonlinearity between clean sand and silty sands was small. For loose samples prepared at an identical relative density, the behaviour of clean sand was slightly less nonlinear as compared to sandy soils with higher fines content. This difference in the nonlinear behaviour of clean sand and sandy soils was negligible for dense soils. Furthermore, no systematic influence of fines content on the material damping curve was observed for sands with fines content FC = 0 to 30%. In order to normalize the effects of fines on moduli of sands, equivalent granular void ratio, e*, was employed. This was done through quantifying the participation of fines content in the force transfer chain of the sand matrix. As such, a unified framework for modelling of the variability of shear wave velocity, Vs, (or shear modulus, Gmax) with void ratio was achieved for clean sands and sands with fines, irrespective of their fines content. Furthermore, modelling of the cyclic stress-strain behaviour based on this experimental program was investigated. The modelling effort focused on developing a simple constitutive model which simultaneously models the soil modulus and damping relationships with shear strains observed in laboratory tests. The backbone curve of the cyclic model was adopted based on a modified version of Kondner and Zelasko (MKZ) hyperbolic function, with a curvature coefficient, a. In order to simulate the hysteretic cycles, the conventional Masing rules (Pyke 1979) were revised. The parameter n, in the Masing’s criteria was assumed to be a function of material damping, h, measured in the laboratory. As such the modulus and damping produced by the numerical model could match the stress-strain behaviour observed in the laboratory over the course of this study. It was shown that the Masing parameter n, is strain-dependent and generally takes values of n ≤ 2. The model was then verified through element test simulations under different cyclic loadings. It was shown that the model could accurately simulate the modulus and the damping simultaneously. The model was then incorporated within the OpenSees computational platform and was used to scrutinize the effects of damping on one-dimensional seismic site response analysis. For this purpose, several strong motion stations which recorded the Canterbury earthquake sequence were selected. The soil profiles were modelled as semi-infinite horizontally layered deposits overlying a uniform half-space subjected to vertically propagating shear waves. The advantages and limitations of the nonlinear model in terms of simulating soil nonlinearity and associated material damping were further scrutinized. It was shown that generally, the conventional Masing criteria unconservatively may underestimate some response parameters such as spectral accelerations. This was shown to be due to larger hysteretic damping modelled by using conventional Masing criteria. In addition, maximum shear strains within the soil profiles were also computed smaller in comparison to the values calculated by the proposed model. Further analyses were performed to study the simulation of backbone curve beyond the strain ranges addressed in the experimental phase of this study. A key issue that was identified was that relying only on the modulus reduction curves to simulate the stress-strain behaviour of soil may not capture the actual soil strength at larger strains. Hence, strength properties of the soil layer should also be incorporated to accurately simulate the backbone curve.
On February 22, 2011, Christchurch-based journalists were jolted out of their normal work routine by a large 6.3 magnitude earthquake that killed 185 people, wrecked the city and forced reporters to reappraise their journalism. This study considers how the earthquake affected journalists’ relationship to the community, their use of sources and news selection. A theory of collective trauma is used to explain the changes that journalists made to their reporting practice. Specifically, Christchurch journalists had a greater identification and attachment to their audience post-earthquake. Journalists viewed themselves as part of the earthquake story, which prompted them to view sources differently, use those sources differently and see advocacy as a keystone of their news work after the disaster. This study adds to a growing scholarship about journalists and trauma, but focuses on what the event meant for local reporters’ choice of sources and news selection rather than measuring rates of psychological distress.
A photograph of students wearing high visibility vests and hard hats. The students are working on a temporary installation for CityUps, titled Antigravity. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014.
A video clip showing close-up footage of a large-scale, temporary installation titled ING. The installation is at the intersection of High Street, Lichfield Street and Manchester Street. The installation was created by students from Unitec, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.
A photograph of students wearing high visibility vests and hard hats. The students are working on a temporary installation for CityUps, titled Antigravity. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014.
The coordination of actors has been a major focus for much of the research in the disaster relief humanitarian logistics discipline. While much of this literature focuses on the initial response phase, little has been written on the longer term recover phase. As the response phase transitions into the longer term recover phase the number and types of actors change from predominantly disaster relief NGOs to more commercial entities we argue that humanitarian values should still be part of the rebuild phase. It has been noted that humanitarian actors both cooperate and compete at the same time (Balcik, Beamon, Krejci, Muramatsu and Ramirez, 2010), in a form of behavior that can be described as ‘co-opetition’ (Nalebuff and Brandenburger, 1996). We use a case study approach to examine an organizational model used to coordinate civil and commercial actors for the rebuild of the civil infrastructure for Christchurch, New Zealand following a series of devastating earthquakes in 2010/11. For the rebuild phase we argue that ‘co-opetition’ is a key behaviour that allows the blending of humanitarian and commercial values to help communities rebuild to a new normal. While at this early stage our contribution is limited, we eventually hope to fully elaborate on an organisational model that has been created specifically for the tight coordination of commercial actors and its relevance to the rebuild phase of a disaster. Examining the behaviour of co-opetition and the structures that incentivise this behaviour offers insights for the humanitarian logistic field.
A photograph of a temporary, inflatable structure, titled Upload, being installed for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014. Upload was created by students from the University of Auckland, in partnership with Chirney Coffee.
A photograph of a temporary, inflatable structure, titled Upload, being installed for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014. Upload was created by students from the University of Auckland, in partnership with Chirney Coffee.
A photograph of a temporary structure titled GlowCity being installed for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014. GlowCity was created by students from Unitec, in partnership with Games Hall street games.
A video clip of several large-scale, temporary installations being erected on the corner of High and Lichfield Streets, and the corner of Lichfield and Manchester Streets. The installations are being created by students from Unitec, The University of Auckland and CPIT, for CityUps - a 'city of the future for one night only', and the main event of FESTA 2014.