A photograph of members from SPCA Canterbury meeting with Massey University's Veterinary Emergency Response Team (VERT). VERT travelled to Christchurch after the 22 February 2011 earthquake in order to assist with caring for animals.
A photograph of members from Massey University's Veterinary Emergency Response Team (VERT) ready to depart. VERT travelled to Christchurch after the 22 February 2011 earthquake in order to assist with the caring of animals.
The "Lyttelton Review" newsletter for 5 March 2012, produced by the Lyttelton Harbour Information Centre.
An overview of the 22 February 2011 Christchurch earthquake is presented in the context of characterization of extreme/rare events. Focus is given to the earthquake source, observed near-source strong ground motions, and effects of site response, while structural response and consequences are mentioned for completeness. For each of the above topics comparisons and discussions are made with predictive models for each of phenomena considered. In light of the observations and predictive model comparisons, the author’s opinion on improving the characterization of such extreme/rare events, and their appropriate consideration in seismic design is presented
Co-founders of Gap Filler, a creative urban regeneration initiative started in Canterbury in response to the earthquakes.
Site is a contemporary art/architecture/media proposal for inner-city living in Christchurch. Originated prior to the 4 Sept. 2010 earthquake, in response to a Christchurch City Council plan to increase the number of central city residents. Includes a video file and blog, including archive.
A news item titled, "Council Rates Rebate", published on the Lyttelton Harbour Information Centre's website on Friday, 23 September 2011.
The State Services Commission is investigating Canterbury earthquake insurer Southern Response. A new pharmacy council ethics code has upset doctors.
Blog of Action for Christchurch East, a group campaigning for the rights of residents in the Eastern suburbs of Christchurch. Includes discussion of political and social issues, delays to insurance payments and repairs, and protest actions in response.
The "Lyttelton Review" newsletter for 30 January 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 19 December 2011, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 30 July 2012, produced by the Lyttelton Harbour Information Centre.
Complaints about the response of emergency services after the February earthquake in Christchurch will be examined by a Coroner.
A photograph of members of Massey University's Veterinary Emergency Response Team (VERT) working in the central city red zone after the 22 February 2011 earthquake. VERT travelled to Christchurch after the 22 February 2011 earthquake in order to assist with caring for animals. Each member is wearing a hard hat, face masks, and a head lamp.
An entry from Ruth Gardner's blog for 22 February 2012 entitled, "Loss of Lives, Livelihood and Living".
In major seismic events, a number of plan-asymmetric buildings which experienced element failure or structural collapse had twisted significantly about their vertical axis during the earthquake shaking. This twist, known as “building torsion”, results in greater demands on one side of a structure than on the other side. The Canterbury Earthquakes Royal Commission’s reports describe the response of a number of buildings in the February 2011 Christchurch earthquakes. As a result of the catastrophic collapse of one multi-storey building with significant torsional irregularity, and significant torsional effects also in other buildings, the Royal Commission recommended that further studies be undertaken to develop improved simple and effective guides to consider torsional effects in buildings which respond inelastically during earthquake shaking. Separately from this, as building owners, the government, and other stakeholders, are planning for possible earthquake scenarios, they need good estimates of the likely performance of both new and existing buildings. These estimates, often made using performance based earthquake engineering considerations and loss estimation techniques, inform decision making. Since all buildings may experience torsion to some extent, and torsional effects can influence demands on building structural and non-structural elements, it is crucial that demand estimates consider torsion. Building seismic response considering torsion can be evaluated with nonlinear time history analysis. However, such analysis involves significant computational effort, expertise and cost. Therefore, from an engineers’ point of view, simpler analysis methods, with reasonable accuracy, are beneficial. The consideration of torsion in simple analysis methods has been investigated by many researchers. However, many studies are theoretical without direct relevance to structural design/assessment. Some existing methods also have limited applicability, or they are difficult to use in routine design office practice. In addition, there has been no consensus about which method is best. As a result, there is a notable lack of recommendations in current building design codes for torsion of buildings that respond inelastically. There is a need for building torsion to be considered in yielding structures, and for simple guidance to be developed and adopted into building design standards. This study aims to undertaken to address this need for plan-asymmetric structures which are regular over their height. Time history analyses are first conducted to quantify the effects of building plan irregularity, that lead to torsional response, on the seismic response of building structures. Effects of some key structural and ground motion characteristics (e.g. hysteretic model, ground motion duration, etc.) are considered. Mass eccentricity is found to result in rather smaller torsional response compared to stiffness/strength eccentricity. Mass rotational inertia generally decreases the torsional response; however, the trend is not clearly defined for torsionally restrained systems (i.e. large λty). Systems with EPP and bilinear models have close displacements and systems with Takeda, SINA, and flag-shaped models yield almost the same displacements. Damping has no specific effect on the torsional response for the single-storey systems with the unidirectional eccentricity and excitation. Displacements of the single-storey systems subject to long duration ground motion records are smaller than those for short duration records. A method to consider torsional response of ductile building structures under earthquake shaking is then developed based on structural dynamics for a wide range of structural systems and configurations, including those with low and high torsional restraint. The method is then simplified for use in engineering practice. A novel method is also proposed to simply account for the effects of strength eccentricity on response of highly inelastic systems. A comparison of the accuracy of some existing methods (including code-base equivalent static method and model response spectrum analysis method), and the proposed method, is conducted for single-storey structures. It is shown that the proposed method generally provides better accuracy over a wide range of parameters. In general, the equivalent static method is not adequate in capturing the torsional effects and the elastic modal response spectrum analysis method is generally adequate for some common parameters. Record-to-record variation in maximum displacement demand on the structures with different degrees of torsional response is considered in a simple way. Bidirectional torsional response is then considered. Bidirectional eccentricity and excitation has varying effects on the torsional response; however, it generally increases the weak and strong edges displacements. The proposed method is then generalized to consider the bidirectional torsion due to bidirectional stiffness/strength eccentricity and bidirectional seismic excitation. The method is shown to predict displacements conservatively; however, the conservatism decreases slightly for cases with bidirectional excitation compared to those subject to unidirectional excitation. In is shown that the roof displacement of multi-storey structures with torsional response can be predicted by considering the first mode of vibration. The method is then further generalized to estimate torsional effects on multi-storey structure displacement demands. The proposed procedure is tested multi-storey structures and shown to predict the displacements with a good accuracy and conservatively. For buildings which twist in plan during earthquake shaking, the effect of P-Δλ action is evaluated and recommendations for design are made. P-Δλ has more significant effects on systems with small post- yield stiffness. Therefore, system stability coefficient is shown not to be the best indicator of the importance of P-Δλ and it is recommended to use post-yield stiffness of system computed with allowance for P-Δλ effects. For systems with torsional response, the global system stability coefficient and post- yield stiffness ration do not reflect the significance of P-Δλ effects properly. Therefore, for torsional systems individual seismic force resisting systems should be considered. Accuracy of MRSA is investigated and it is found that the MRSA is not always conservative for estimating the centre of mass and strong edge displacements as well as displacements of ductile systems with strength eccentricity larger than stiffness eccentricity. Some modifications are proposed to get the MRSA yields a conservative estimation of displacement demands for all cases.
There is growing expectation that local volunteers will play a more integrated role in disaster response, yet emergent groups are often ‘outsiders’ to crisis management, prompting questions of the conditions and processes by which these groups can forge relationships with established response agencies, and the tensions which can arise those interactions. This article analyses how student-led volunteers, as an emergent group, nevertheless gained “authority to operate” in the aftermath of the 2010-2011 earthquakes in Canterbury, New Zealand. Our study demonstrates how established response agencies and emergent groups can form hugely impactful and mutually supportive relationships. However, our analysis also points to two interrelated tensions that can arise, regarding the terms by which emergent groups are recognised, and the ‘distance’ considered necessary between emergent groups and established response agencies. The discussion considers implications for inclusiveness, risk and responsibility if emergent volunteers are to be further integrated into disaster response.
Members of the emergency response team look at a map of the campus at the Emergency House after the September earthquakes.
This report examines and compares case studies of labour market policy responses in APEC economies to natural disasters. It first reviews the policies and practice within APEC economies and internationally in managing the labour market effects of natural disasters. By using comparative case studies, the report then compares recent disaster events in the Asia-Pacific region, including: - the June 2013 Southern Alberta floods in Canada; - the 2010 and 2011 Queensland floods in Australia; - the 2010 and 2011 Canterbury earthquakes in New Zealand; - the 2011 Great East Japan Earthquake and Tsunami in Japan; and - the 2008 Wenchuan earthquake in China.
The "Lyttelton Review" newsletter for 23 April 2012, produced by the Lyttelton Harbour Information Centre.
The first police officer at the scene of the collapsed and burning CTV building has recounted harrowing details of his efforts in the hours after the February 2011 earthquake in Christchurch.
Police are investigating the origins of a letter which threatened Earthquake Commission staff and referred to the Christchurch mosque shootings. The Earthquake Commission has heightened security at all its offices in response. Renée Walker is EQC's deputy chief executive. She talks to Susie Ferguson.
The "Lyttelton Review" newsletter for 6 February 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Harbour Review" newsletter for 29 July 2013, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Review" newsletter for 2 July 2012, produced by the Lyttelton Harbour Information Centre.
The "Lyttelton Harbour Review" newsletter for 25 February 2013, produced by the Lyttelton Harbour Information Centre.
The September 2010 Canterbury and February 2011 Christchurch earthquakes and associated aftershocks have shown that the isolator displacement in Christchurch Women's Hospital (Christchurch City's only base-isolated structure) was significantly less than expected. Occupant accounts of the events have also indicated that the accelerations within the hospital superstructure were larger than would usually be expected within a base-isolated structure and that residual low-level shaking lasts for a longer period of time following the strong-motion of an event than for non-isolated structures.
An entry from Roz Johnson's blog for 3 June 2012 entitled, "Grubb Cottage Gets the Warm Fuzzies".
Fire following earthquakes have caused the largest single loss due to earthquakes and in most cases have caused more damage than the quake itself. This problem is regarded very seriously in Japan and in some parts of the United States of America (San Francisco), but is not very seriously considered in other earthquake prone countries, yet the potential for future conflagrations following earthquakes is enormous. Any discussion of post earthquake fire must take into account structural and non-structural damages, initial and spreading fire, wind, water availability, and emergency responses. In this paper we will look at initial fire ignitions, growth and spread and life and property damage. Prevention methods will also be discussed. We will also discuss as examples some case studies: - San Francisco 1989 - Napier 1931 -Christchurch (scenario)
A video of a conversation between John Hamilton, National Controller of the Civil Defence Emergency Response, and Dr Sonia Giovinazzi, Research Fellow at the Department of Civil and Natural Resource Engineering at the University of Canterbury. Hamilton and Giovinazzi discuss the Civil Defence's response to the 22 February 2011 earthquake and the lessons that they learned.The video includes footage from the Ministry of Civil Defence (licenced under Creative Commons Attribute 3.0 New Zealand).