Photograph captioned by BeckerFraserPhotos, "753 - 757 Colombo Street".
Photograph captioned by BeckerFraserPhotos, "753 - 757 Colombo Street".
Damage to the Cathedral of the Blessed Sacrament. Large cracks are visible in the walls.
Photograph captioned by BeckerFraserPhotos, "Press Building, Cathedral Square. Top floor collapsed during the February 22 earthquake".
A gap between the house and the foundations along Avonside drive caused when the house was lifted during the 4 September earthquake.
A photograph of the first page of a copy of a Level 1 Rapid Assessment Form. The form was used by the Civil Defence to document the earthquake damage to buildings in central Christchurch after the 22 February 2011 earthquake.
A photograph of the second page of a copy of a Level 2 Rapid Assessment Form. The form was used by the Civil Defence to document the earthquake damage to buildings in central Christchurch after the 22 February 2011 earthquake.
A photograph of the third page of a copy of a Level 2 Rapid Assessment Form. The form was used by the Civil Defence to document the earthquake damage to buildings in central Christchurch after the 22 February 2011 earthquake.
Photograph captioned by BeckerFraserPhotos, "176 Gloucester Street".
A photograph of the first page of a copy of a Level 2 Rapid Assessment Form. The form was used by the Civil Defence to document the earthquake damage to buildings in central Christchurch after the 22 February 2011 earthquake.
Photograph captioned by BeckerFraserPhotos, "South-east corner of Madras and Lichfield Streets".
A photograph of the earthquake-damaged Christ Church Cathedral.
Photograph captioned by BeckerFraserPhotos, "91 Cashel Mall".
An overseas expert has defended the structural engineer who declared the Canterbury Television building sound after the September 2010 earthquake.
Photograph captioned by BeckerFraserPhotos, "Lyttelton Police station is structurally compromised with south wall (not visible here) partly collapsed".
Damage to the Kenton Chambers building. Diagonal cracking between the windows shows that the building has suffered major structural damage.
Damage to the Kenton Chambers building. Diagonal cracking between the windows shows that the building has suffered major structural damage.
This study investigates evidence for linkages and fault interactions centred on the Cust Anticline in Northwest Canterbury between Starvation Hill to the southwest and the Ashley and Loburn faults to the northeast. An integrated programme of geologic, geomorphic, paleo-seismic and geophysical analyses was undertaken owing to a lack of surface exposures and difficulty in distinguishing active tectonic features from fluvial and/or aeolian features across the low-relief Canterbury Plains. LiDAR analysis identified surface expression of several previously unrecognised active fault traces across the low-relief aggradation surfaces of the Canterbury Plains. Their presence is consistent with predictions of a fault relay exploiting the structural mesh across the region. This is characterised by interactions of northeast-striking contractional faults and a series of re-activating inherited Late Cretaceous normal faults, the latter now functioning as E–W-striking dextral transpressive faults. LiDAR also allowed for detailed analysis of the surface expression of individual faults and folds across the Cust Anticline contractional restraining bend, which is evolving as a pop-up structure within the newly established dextral shear system that is exploiting the inherited, now re-activated, basement fault zone. Paleo-seismic trenches were located on the crest of the western arm of the Cust Anticline and across a previously unrecognised E–W-striking fault trace, immediately southwest of the steeply plunging Cust Anticline termination. These studies confirmed the location and structural style of north-northeast-striking faults and an E–W-striking fault associated with the development of this structural culmination. A review of available industry seismic reflection lines emphasised the presence of a series of common structural styles having the same underlying structural drivers but with varying degrees of development and expression, both in the seismic profiles and in surface elevations across the study area. Based on LiDAR surface mapping and preliminary re-analysis of industry seismic reflection data, four fault zones are identified across the restraining bend structural culminations, which together form the proposed Oxford–Cust–Ashley Fault System. The 2010–2012 Canterbury Earthquake Sequence showed many similarities to the structural pattern established across the Oxford–Cust–Ashley Fault System, emphasising the importance of identification and characterization of presently hidden fault sources, and the understanding of fault network linkages, in order to improve constraints on earthquake source potential. Improved understanding of potentially-interactive fault sources in Northwest Canterbury, with the potential for combined initial fault rupture and spatial and temporal rupture propagation across this fault system, can be used in probabilistic seismic hazard analysis for the region, which is essential for the suitability and sustainability of future social and economic development.
A video about the Christchurch City Council housing complex on Conference Street in the Christchurch central city. The housing complex was unoccupied after the 22 February 2011 earthquake despite the housing shortage. Christchurch City Council said that the vacant units could not be lived in because of structural damage or damage to services. However, the building has been checked by structural engineers and many of the rooms have been deemed safe to occupy.
Structural engineering is facing an extraordinarily challenging era. These challenges are driven by the increasing expectations of modern society to provide low-cost, architecturally appealing structures which can withstand large earthquakes. However, being able to avoid collapse in a large earthquake is no longer enough. A building must now be able to withstand a major seismic event with negligible damage so that it is immediately occupiable following such an event. As recent earthquakes have shown, the economic consequences of not achieving this level of performance are not acceptable. Technological solutions for low-damage structural systems are emerging. However, the goal of developing a low-damage building requires improving the performance of both the structural skeleton and the non-structural components. These non-structural components include items such as the claddings, partitions, ceilings and contents. Previous research has shown that damage to such items contributes a disproportionate amount to the overall economic losses in an earthquake. One such non-structural element that has a history of poor performance is the external cladding system, and this forms the focus of this research. Cladding systems are invariably complicated and provide a number of architectural functions. Therefore, it is important than when seeking to improve their seismic performance that these functions are not neglected. The seismic vulnerability of cladding systems are determined in this research through a desktop background study, literature review, and postearthquake reconnaissance survey of their performance in the 2010 – 2011 Canterbury earthquake sequence. This study identified that precast concrete claddings present a significant life-safety risk to pedestrians, and that the effect they have upon the primary structure is not well understood. The main objective of this research is consequently to better understand the performance of precast concrete cladding systems in earthquakes. This is achieved through an experimental campaign and numerical modelling of a range of precast concrete cladding systems. The experimental campaign consists of uni-directional, quasi static cyclic earthquake simulation on a test frame which represents a single-storey, single-bay portion of a reinforced concrete building. The test frame is clad with various precast concrete cladding panel configurations. A major focus is placed upon the influence the connection between the cladding panel and structural frame has upon seismic performance. A combination of experimental component testing, finite element modelling and analytical derivation is used to develop cladding models of the cladding systems investigated. The cyclic responses of the models are compared with the experimental data to evaluate their accuracy and validity. The comparison shows that the cladding models developed provide an excellent representation of real-world cladding behaviour. The cladding models are subsequently applied to a ten-storey case-study building. The expected seismic performance is examined with and without the cladding taken into consideration. The numerical analyses of the case-study building include modal analyses, nonlinear adaptive pushover analyses, and non-linear dynamic seismic response (time history) analyses to different levels of seismic hazard. The clad frame models are compared to the bare frame model to investigate the effect the cladding has upon the structural behaviour. Both the structural performance and cladding performance are also assessed using qualitative damage states. The results show a poor performance of precast concrete cladding systems is expected when traditional connection typologies are used. This result confirms the misalignment of structural and cladding damage observed in recent earthquake events. Consequently, this research explores the potential of an innovative cladding connection. The outcomes from this research shows that the innovative cladding connection proposed here is able to achieve low-damage performance whilst also being cost comparable to a traditional cladding connection. It is also theoretically possible that the connection can provide a positive value to the seismic performance of the structure by adding addition strength, stiffness and damping. Finally, the losses associated with both the traditional and innovative cladding systems are compared in terms of tangible outcomes, namely: repair costs, repair time and casualties. The results confirm that the use of innovative cladding technology can substantially reduce the overall losses that result from cladding damage.
A photograph of Luis Castillo, structural engineer for Aurecon, giving a speech at the Pallet Pavilion as part of FESTA 2013.
A photograph of Luis Castillo, structural engineer for Aurecon, giving a speech at the Pallet Pavilion as part of FESTA 2013.
A photograph captioned by BeckerFraserPhotos, "ChristChurch Cathedral".
A photograph captioned by BeckerFraserPhotos, "ChristChurch Cathedral".
A photograph captioned by BeckerFraserPhotos, "ChristChurch Cathedral".
A photograph captioned by BeckerFraserPhotos, "Christ Church Cathedral".
A photograph captioned by BeckerFraserPhotos, "ChristChurch Cathedral".
A photograph of the damaged Christ Church Cathedral.
A photograph captioned by BeckerFraserPhotos, "ChristChurch Cathedral".
A photograph of the damaged Christ Church Cathedral.