Search

found 1772 results

Images, UC QuakeStudies

A photograph of the alleyway between to buildings in Christchurch. A chimney has fallen off the roof of one of the buildings and landed in the alleyway. One of the screens from the archway above has come with it.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house in Christchurch. The bricks on the side of the house have crumbled and damaged the fence. A red sticker on the front window indicates that the building is unsafe to enter.

Images, UC QuakeStudies

A photograph of women sewing felt badges outside the Christchurch City Library in Lyttelton. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.

Images, UC QuakeStudies

A photograph of women sewing felt badges outside the Christchurch City Library in Lyttelton. The felt hearts were a healing outlet during the Canterbury earthquakes. The goal was to create beauty in the midst of chaos, to keep people's hands busy and their minds off the terrifying reality of the earthquakes, as well as to give a gift of love to workers and businesses who helped improve life in Lyttelton.

Research papers, University of Canterbury Library

The level of destruction from the 2011 Christchurch earthquakes led to changes in the New Zealand seismic building code. The destruction showed that the NZ building codes did not fully performed to expectation and needed Improvement to ensure that impact of future earthquakes would be minimised. The building codes have been amended to improve buildings resilience to earthquake and other related extreme loading conditions. Rebuilding Christchurch with the new modifications in the seismic building code comes with its own unique challenges to the entire system. This project investigates the impact of rebuilding Christchurch with the new seismic Building codes in terms of how the new changes affected the building industry and the management of construction.

Research papers, University of Canterbury Library

Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. Also, existing methods do not quantify appropriately the influence on liquefaction resistance of soil fabric and structure, which are unique to a specific depositional environment. This study looks at the influence of fines content, soil fabric (i.e. arrangement of soil particles) and structure (e.g. layering, segregation) on the undrained cyclic behaviour and liquefaction resistance of fines-containing sandy soils from Christchurch using Direct Simple Shear (DSS) tests on soil specimens reconstituted in the laboratory with the water sedimentation technique. The poster describes experimental procedures and presents early test results on two sands retrieved at two different sites in Christchurch.

Images, UC QuakeStudies

A photograph submitted by Ginny Larsen to the QuakeStories website. The description reads, "I work for Neighbourhood Trust in Mairehau/Shirley. In April 2011 a group of people from Liberty Church came down to Christchurch to gift 100s of Easter boxes to residents – lots of treats to bring a smile.".

Images, UC QuakeStudies

A photograph of the earthquake damage the brick fence of a house in Christchurch. Bricks from the broken fence have been stacked on the footpath in front. Liquefaction has been piled on the footpath and road cones placed in front.

Images, UC QuakeStudies

A photograph of the earthquake damage the brick fence of a house in Christchurch. Bricks from the broken fence have been stacked on the footpath in front. Liquefaction has been piled on the footpath and road cones placed in front.

Images, UC QuakeStudies

A photograph of the earthquake damage to a property in the Christchurch central city. Part of the roof of the property has collapsed, spilling material onto the balcony below. A sign in the foreground reads, "Wots your councillor doing for your water?".

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading during earthquakes poses a significant hazard to the built environment, as observed in Christchurch during the 2010 to 2011 Canterbury Earthquake Sequence (CES). It is critical that geotechnical earthquake engineers are able to adequately predict both the spatial extent of lateral spreads and magnitudes of associated ground movements for design purposes. Published empirical and semi-empirical models for predicting lateral spread displacements have been shown to vary by a factor of <0.5 to >2 from those measured in parts of Christchurch during CES. Comprehensive post- CES lateral spreading studies have clearly indicated that the spatial distribution of the horizontal displacements and extent of lateral spreading along the Avon River in eastern Christchurch were strongly influenced by geologic, stratigraphic and topographic features.

Images, UC QuakeStudies

A photograph of a make-shift toilet in the Christchurch Art Gallery. A sign behind it reads, "Portaloos Department. We know that 80,000 people need loos. We have 900-1800 available or coming, We don't need to be told people need loos. Thank you. We're number one with your number twos!". Signs below this read, "Toilet Occupied", "Toilet Vacant" and, "In Tray". The Art Gallery was used as the temporary headquarters for Civil Defence after the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph of messages attached to the wire fencing around the Christchurch Chinese Methodist Church. A paper heart reads, "'The Lord is close to the broken hearted; He rescues those whose spirits are crushed' Psalm 24:18'. A message from the Japanese Red Cross Psychological Support Team reads, "Thank you, also from us, for your warm support. Our thoughts are with you always".

Research papers, University of Canterbury Library

Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.

Images, UC QuakeStudies

A photograph of road works on a bridge in Christchurch. An excavator has been parked on the left side of the bridge. Road cones have been placed around it. A sign at the entrance to the bridge reads, "No entry to vehicles over 3500kg".

Research Papers, Lincoln University

Imagined landscapes find their form in utopian dreaming. As ideal places, utopias are set up according to the ideals of their designers. Inevitably, utopias become compromised when they move from the imaginary into the actual. Opportunities to create utopias rely largely on a blank slate, a landscape unimpeded by the inconveniences of existing occupation – or even topography. Christchurch has seen two utopian moments. The first was at the time of European settlement in the mid-nineteenth century, when imported ideals provided a model for a new city. The earthquakes of 2010 and 2011 provided a second point at which utopian dreaming spurred visions for the city. Christchurch’s earthquakes have provided a unique opportunity for a city to re-imagine itself. Yet, as is the fate for all imaginary places, reality got in the way.

Images, UC QuakeStudies

A photograph of road works on a residential street in Christchurch. A patch of asphalt has been removed and a digger and a steam roller are parked to the side. A worker in a high-visibility vest and hard hat is directing traffic along one lane.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house in Christchurch. The house has moved off its foundations and many of the walls have crumbled, the bricks spilling onto the street in front. Messages such as "Clear" and "Danger keep out" have been spray-painted on the foundation wall.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house in Christchurch. The house has moved off its foundations and many of the walls have crumbled, the bricks spilling onto the street in front. Messages such as "Clear" and "Danger keep out" have been spray-painted on the foundation wall.

Images, UC QuakeStudies

A photograph of an earthquake-damaged house in Christchurch. The house has moved off its foundations and many of the walls have crumbled, the bricks spilling onto the street in front. Messages such as "Clear" and "Danger keep out" have been spray-painted on the foundation wall.

Research Papers, Lincoln University

On 4 September 2010, a 7.1 magnitude earthquake struck near Darfield, 40 kilometres west of Christchurch, New Zealand. The quake caused significant damage to land and buildings nearby, with damage extending to Christchurch city. On 22 February 2011, a 6.3 magnitude earthquake struck Christchurch, causing extensive and significant damage across the city and with the loss of 185 lives. Years on from these events, occasional large aftershocks continue to shake the region. Two main entomological collections were situated within close proximity to the 2010/11 Canterbury earthquakes. The Lincoln University Entomology Research Collection, which is housed on the 5th floor of a 7 storey building, was 27.5 km from the 2010 Darfield earthquake epicentre. The Canterbury Museum Entomology Collection, which is housed in the basement of a multi-storeyed heritage building, was 10 km from the 2011 Christchurch earthquake epicentre. We discuss the impacts of the earthquakes on these collections, the causes of the damage to the specimens and facilities, and subsequent efforts that were made to prevent further damage in the event of future seismic events. We also discuss the wider need for preparedness against the risks posed by natural disasters and other catastrophic events.

Research papers, University of Canterbury Library

Earthquake-triggered soil liquefaction caused extensive damage and heavy economic losses in Christchurch during the 2010-2011 Canterbury earthquakes. The most severe manifestations of liquefaction were associated with the presence of natural deposits of clean sands and silty sands of fluvial origin. However, liquefaction resistance of fines-containing sands is commonly inferred from empirical relationships based on clean sands (i.e. sands with less than 5% fines). Hence, existing evaluation methods have poor accuracy when applied to silty sands. The liquefaction behaviour of Christchurch fines-containing (silty) sands is investigated through a series of Direct Simple Shear (DSS) tests. This type of test better resembles earthquake loading conditions in soil deposits compared to cyclic triaxial tests. Soil specimens are reconstituted in the laboratory with the water sedimentation technique. This preparation method yields soil fabrics similar to those encountered in fluvial soil deposits, which are common in the Christchurch area. Test results provide preliminary indications on how void ratio, relative density, preparation method and fines content influence the cyclic liquefaction behaviour of sand-silt mixtures depending on the properties of host sand and silt.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Chinese Methodist Church on Papanui Road. The bricks at the top of the tower have crumbled, and the wooden bracing is hanging half off the building. The spire of the tower can be seen to the left where it was moved to following the 4 September 2010 earthquake.

Research papers, University of Canterbury Library

These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.

Research papers, University of Canterbury Library

In 2010 and 2011 a series of earthquakes hit the central region of Canterbury, New Zealand, triggering widespread and damaging liquefaction in the area of Christchurch. Liquefaction occurred in natural clean sand deposits, but also in silty (fines-containing) sand deposits of fluvial origin. Comprehensive research efforts have been subsequently undertaken to identify key factors that influenced liquefaction triggering and severity of its manifestation. This research aims at evaluating the effects of fines content, fabric and layered structure on the cyclic undrained response of silty soils from Christchurch using Direct Simple Shear (DSS) tests. This poster outlines preliminary calibration and verification DSS tests performed on a clean sand to ensure reliability of testing procedures before these are applied to Christchurch soils.

Research Papers, Lincoln University

Numerous rockfalls released during the 2010–2011 Canterbury earthquake sequence affected vital road sections for local commuters. We quantified rockfall fatality risk on two main routes by adapting a risk approach for roads originally developed for snow avalanche risk. We present results of the collective and individual fatality risks for traffic flow and waiting traffic. Waiting traffic scenarios particularly address the critical spatial-temporal dynamics of risk, which should be acknowledged in operational risk management. Comparing our results with other risks commonly experienced in New Zealand indicates that local rockfall risk is close to tolerability thresholds and likely exceeds acceptable risk.

Research papers, University of Canterbury Library

These research papers explore the concept of vulnerability in international human rights law. In the wake of the Christchurch earthquakes of 2010-2011, this research focuses on how "vulnerability" has been used and developed within the wider human rights discourse. They also examine jurisprudence of international human rights bodies, and how the concept of "vulnerability" has been applied. The research also includes a brief investigation into the experiences of vulnerable populations in disaster contexts, focusing primarily on the experiences of "vulnerable persons" in the Christchurch earthquakes and their aftermath.