Search

found 194 results

Research papers, University of Canterbury Library

This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.

Images, UC QuakeStudies

The damaged Snell Place footbridge. A crack is visible at the apex of the span. The photographer comments, "Before the Christchurch earthquakes this bridge used to be just just 9 feet at high tide above the River Avon. Now with the ends pushed together it has probably moved up another 9 feet".

Audio, Radio New Zealand

Residents of Christchurch's coastal suburbs around New Brighton are being promised they won't have to wait another decade for an urgently needed new bridge. The existing one is a critical emergency escape route but is almost 100 years old and suffered significant damage in the 2011 earthquake. And as Timothy Brown reports, plans for an upgrade are grinding slowly ahead.

Images, UC QuakeStudies

The badly twisted Medway Street footbridge. The photographer comments, "The September 4th 2010 earthquake in Christchurch was so violent that the banks of the Avon River moved towards each other. This footbridge being metal had to twist sideways to release the pressure of being pushed from both river banks. It looked like it had been wrung out like a wet towel".

Research papers, University of Canterbury Library

This paper describes pounding damage sustained by buildings and bridges in the February 2011 Christchurch earthquake. Approximately 6% of buildings in Christchurch CBD were observed to have suffered some form of serious pounding damage. Almost all of this pounding damage occurred in masonry buildings, further highlighting their vulnerability to this phenomenon. Modern buildings were found to be vulnerable to pounding damage where overly stiff and strong ‘flashing’ components were installed in existing building separations. Soil variability is identified as a key aspect that amplifies the relative movement of buildings, and hence increases the likelihood of pounding damage. Pounding damage in bridges was found to be relatively minor and infrequent in the Christchurch earthquake.

Research Papers, Lincoln University

There is a critical strand of literature suggesting that there are no ‘natural’ disasters (Abramovitz, 2001; Anderson and Woodrow, 1998; Clarke, 2008; Hinchliffe, 2004). There are only those that leave us – the people - more or less shaken and disturbed. There may be some substance to this; for example, how many readers recall the 7.8 magnitude earthquake centred in Fiordland in July 2009? Because it was so far away from a major centre and very few people suffered any consequences, the number is likely to be far fewer than those who remember (all too vividly) the relatively smaller 7.1 magnitude Canterbury quake of September 4th 2010 and the more recent 6.3 magnitude February 22nd 2011 event. One implication of this construction of disasters is that seismic events, like those in Canterbury, are as much socio-political as they are geological. Yet, as this paper shows, the temptation in recovery is to tick boxes and rebuild rather than recover, and to focus on hard infrastructure rather than civic expertise and community involvement. In this paper I draw upon different models of community engagement and use Putnam’s (1995) notion of ‘social capital’ to frame the argument that ‘building bridges’ after a disaster is a complex blend of engineering, communication and collaboration. I then present the results of a qualitative research project undertaken after the September 4th earthquake. This research helps to illustrate the important connections between technical rebuilding, social capital, recovery processes and overall urban resilience.

Images, Alexander Turnbull Library

Text reads 'Uses for Christchurch rubble?...' The cartoon shows a bridge made partially of earthquake rubble leading from Lyttelton Harbour to Diamond Harbour on Banks Peninsula. Someone in a van says 'At long last... A bridge to Diamond Harbour!' And someone else says 'And somewhere to fish!' Context - Rubble from the earthquake may be used for the construction of watersides and bridges. This cartoon is a fanciful use for Christchurch earthquake rubble. Currently a ferry connects Diamond Harbour to Lyttelton, on the harbour's northern shore. In combination with buses from Lyttelton to downtown Christchurch, this allows residents of Diamond Bay to commute to the city. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing an estimated 181 fatalities and severely damaging thousands of residential and commercial buildings. This paper presents a summary of some of the observations made by the NSF-sponsored GEER Team regarding the geotechnical/geologic aspects of this earthquake. The Team focused on documenting the occurrence and severity of liquefaction and lateral spreading, performance of building and bridge foundations, buried pipelines and levees, and significant rockfalls and landslides. Liquefaction was pervasive and caused extensive damage to residential properties, water and wastewater networks, high-rise buildings, and bridges. Entire neighborhoods subsided, resulting in flooding that caused further damage. Additionally, liquefaction and lateral spreading resulted in damage to bridges and to stretches of levees along the Waimakariri and Kaiapoi Rivers. Rockfalls and landslides in the Port Hills damaged several homes and caused several fatalities.

Images, eqnz.chch.2010

The center of the river has slumped and the two banks have moved about a meter closer together which caused this footbridge to be so twisted. There is a suggestion that this be left as a memorial to the earthquake.