Search

found 185 results

Images, UC QuakeStudies

A photograph of earthquake damage to the Crown Masonic Lodge on Wordsworth Street, also known as the Freemasons Centre. The brick wall on one side of the building has collapsed, exposing the interior.

Images, UC QuakeStudies

Damage to The Bone Dude's Bone Carving Studio and Cultured Gallery on Fitzgerald Avenue. The brick wall is cracked, and the guttering has fallen. The photographer comments, "This building was damaged in the September earthquake in Christchurch. It was the Bone dude's bone carving studio. The motto on the wall was 'Carve your own' and it looks like the earthquakes did just that".

Images, UC QuakeStudies

A photograph of earthquake damage to the Crown Masonic Lodge on Wordsworth Street, also known as the Freemasons Centre. Sections of the brick wall at the front of the building have collapsed. The entranceway is supported with wooden bracing.

Images, UC QuakeStudies

A photograph of earthquake damage to the Crown Masonic Lodge on Wordsworth Street, also known as the Freemasons Centre. Sections of the brick wall at the front of the building have collapsed. The entranceway is supported with wooden bracing.

Research papers, The University of Auckland Library

In the early morning of 4th September 2010 the region of Canterbury, New Zealand, was subjected to a magnitude 7.1 earthquake. The epicentre was located near the town of Darfield, 40 km west of the city of Christchurch. This was the country’s most damaging earthquake since the 1931 Hawke’s Bay earthquake (GeoNet, 2010). Since 4th September 2010 the region has been subjected to thousands of aftershocks, including several more damaging events such as a magnitude 6.3 aftershock on 22nd February 2011. Although of a smaller magnitude, the earthquake on 22nd February produced peak ground accelerations in the Christchurch region three times greater than the 4th September earthquake and in some cases shaking intensities greater than twice the design level (GeoNet, 2011; IPENZ, 2011). While in September 2010 most earthquake shaking damage was limited to unreinforced masonry (URM) buildings, in February all types of buildings sustained damage. Temporary shoring and strengthening techniques applied to buildings following the Darfield earthquake were tested in February 2011. In addition, two large aftershocks occurred on 13th June 2011 (magnitudes 5.7 and 6.2), further damaging many already weakened structures. The damage to unreinforced and retrofitted clay brick masonry buildings in the 4th September 2010 Darfield earthquake has already been reported by Ingham and Griffith (2011) and Dizhur et al. (2010b). A brief review of damage from the 22nd February 2011 earthquake is presented here

Images, UC QuakeStudies

Damage to TJ's Kazbah in New Brighton. The tower and east end of the building have collapsed onto two parked cars. The photographer comments, "The occupants of the business and rooms all managed to escape alive. A digger was used to make the building safe and then used to sift through the rubble for any surviving belongings. It was a very emotional time for the ex-occupants. The damaged cars were removed before the digger demolished the building".

Images, eqnz.chch.2010

The base of the tower on the right of this picture has sunk about 25cm so that the lower course of bricks have disappeared below ground level. Meanwhile the other end of the building has sunk about 50cm splitting the building into thirds. The sand you can see is what came bubbling up out of the ground due to liquifaction. Unfortunately the build...

Images, UC QuakeStudies

A view down Colombo Street. A brick wall has been revealed due to the demolition of the adjoining building. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look of the cathedral.

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand, earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e., anchorages having plates on the exterior facade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation, and the use of metal mesh sleeves. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5° to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a summary of the performed experimental program and test results, and a proposed pull-out capacity relationship for adhesive anchors installed into multi-leaf clay brick masonry are presented herein. AM - Accepted Manuscript