
During 2010 and 2011, major earthquakes caused widespread damage and the deaths of 185 people in the city of Christchurch. Damaged school buildings resulted in state intervention which required amendment of the Education Act of 1989, and the development of ‘site sharing agreements’ in undamaged schools to cater for the needs of students whose schools had closed. An effective plan was also developed for student assessment through establishing an earthquake impaired derived grade process. Previous research into traditional explanations of educational inequalities in the United Kingdom, the United States of America, and New Zealand were reviewed through various processes within three educational inputs: the student, the school and the state. Research into the impacts of urban natural disasters on education and education inequalities found literature on post disaster education systems but nothing could be found that included performance data. The impacts of the Canterbury earthquakes on educational inequalities and achievement were analysed over 2009-2012. The baseline year was 2009, the year before the first earthquake, while 2012 is seen as the recovery year as no schools closed due to seismic events and there was no state intervention into the education of the region. National Certificate of Educational Achievement (NCEA) results levels 1-3 from thirty-four secondary schools in the greater Christchurch region were graphed and analysed. Regression analysis indicates; in 2009, educational inequalities existed with a strong positive relationship between a school’s decile rating and NCEA achievement. When schools were grouped into decile rankings (1-10) and their 2010 NCEA levels 1-3 results were compared with the previous year, the percentage of change indicates an overall lower NCEA achievement in 2010 across all deciles, but particularly in lower decile schools. By contrast, when 2011 NCEA results were compared with those of 2009, as a percentage of change, lower decile schools fared better. Non site sharing schools also achieved higher results than site sharing schools. State interventions, had however contributed towards student’s achieving national examinations and entry to university in 2011. When NCEA results for 2012 were compared to 2009 educational inequalities still exist, however in 2012 the positive relationship between decile rating and achievement is marginally weaker than in 2009. Human ethics approval was required to survey one Christchurch secondary school community of students (aged between 12 and 18), teachers and staff, parents and caregivers during October 2011. Participation was voluntary and without incentives, 154 completed questionnaires were received. The Canterbury earthquakes and aftershocks changed the lives of the research participants. This school community was displaced to another school due to the Christchurch earthquake on 22 February 2011. Research results are grouped under four geographical perspectives; spatial impacts, socio-economic impacts, displacement, and health and wellbeing. Further research possibilities include researching the lag effects from the Canterbury earthquakes on school age children.
Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/2013-2/
Maori Party MP for Te Tai Tonga, Rahui Katene' is buried up to her neck in earthquake rubble as she reads a newspaper headline referring to her statement that the aftermath of the earthquake has demonstrated 'racism and ethnic profiling'. Rahui Katene's head is disintegrating and two engineers who are examining the damage decide that 'This can't be repaired, it needs to be condemned'. Rahui Katene says the authorities, who kicked a Christchurch family out of a welfare centre that was set up after the Christchurch earthquake that struck on the 4th September, should apologise for judging them too early and shaming them publicly. Mrs Katene was also concerned about claims that Maori youth were being targeted by police. "I've heard from whanau that in one particular area rangatahi who were volunteering in their community and helping their whanau were accused by police of theft. The whanau are trying to work these issues through with the police, but I'm growing concerned about what appears to be ethnic profiling." Quantity: 1 digital cartoon(s).
As a result of the Christchurch Earthquake that occurred on 22nd February 2011 and the resultant loss of life and widespread damage, a Royal Commission of Enquiry was convened in April 2011. The Royal Commission recommended a number of significant changes to the regulation of earthquake prone building in New Zealand. Earthquake prone buildings are buildings that are deemed to be of insufficient strength to perform adequately in a moderate earthquake. In response to the Royal Commission recommendations the New Zealand Government carried out a consultative process before announcing proposed changes to the building regulations in August 2013. One of the most significant changes is the imposition of mandatory strengthening requirements for earthquake prone buildings on a national basis. This will have a significant impact on the urban fabric of most New Zealand towns and cities. The type of traditional cost benefit study carried out to date fails to measure these impacts and this paper proposes an alternative methodology based on the analysis of land use data and rating valuations. This methodology was developed and applied to a small provincial town in the form of a case study. The results of this case study and the methodology used are discussed in this paper.
The city of Christchurch and its surrounds experienced widespread damage due to soil liquefaction induced by seismic shaking during the Canterbury earthquake sequence that began in September 2010 with the Mw7.1 Darfield earthquake. Prior to the start of this sequence, the city had a large network of strong motion stations (SMSs) installed, which were able to record a vast database of strong ground motions. This paper uses this database of strong ground motion recordings, observations of liquefaction manifestation at the ground surface, and data from a recently completed extensive geotechnical site investigation program at each SMS to assess a range of liquefaction evaluation procedures at the four SMSs in the Christchurch Central Business District (CBD). In general, the characteristics of the accelerograms recorded at each SMS correlated well with the liquefaction evaluation procedures, with low liquefaction factors of safety predicted at sites with clear liquefaction identifiers in the ground motions. However, at sites that likely liquefied at depth (as indicated by evaluation procedures and/or inferred from the characteristics of the recorded surface accelerograms), the presence of a non-liquefiable crust layer at many of the SMS locations prevented the manifestation of any surface effects. Because of this, there was not a good correlation between surface manifestation and two surface manifestation indices, the Liquefaction Potential Index (LPI) and the Liquefaction Severity Number (LSN).
The need for a simple but rigorous seismic assessment procedure to predict damage to reinforced concrete buildings during a seismic event has been highlighted following the Canterbury Earthquake sequence. Such simplified assessment procedure, applied to individual structure or large building inventory, should not only have low requirement in terms of input information and involve straightforward analyses, but also should be capable to provide reliable predictive results within short timeframe. This research provides a general overview and critical comparison of alternative simplified assessment procedures adopted in NZSEE 2006 Guidelines (Assessment and Improvement of the Structural Performance of Buildings in Earthquakes), ASCE 41-13 (Seismic Evaluation and Retrofit of Existing Buildings), and EN: 1998-3: 2005 (Assessment and Retrofitting of Buildings). Particular focus is given to the evaluation of the capability of Simplified Lateral Mechanism Analysis (SLaMa), which is an analytical pushover method adopted in NZSEE 2006 Guidelines. The predictive results from SLaMa are compared to damages observed for a set of reinforced concrete buildings in Christchurch, as well as the results from more detailed assessment procedure based on numerical modelling. This research also suggests improvements to SLaMa, together with validation of the improvements, to include assessment of local mechanism by strength hierarchy evaluation, as well as to develop assessment of global mechanism including post-yield mechanism sequence based on local mechanism.
- The Avon-Ōtākaro Redzone is an 11 kilometer stretch of land along the Avon-Ōtākaro River in Christchurch. - This project focused on the creation of a publicly available biodiversity map of the AvonŌtākaro River Corridor, a project undertaken as part of the ecological restoration of the Christchurch redzone. - This project originated from the Christchurch 2010-2011 earthquake sequence which saw liquefaction damage along 11km of the Avon River. Under guidance from The Nature Lab & Ōtākaro Living Laboratory, and various other experts, the primary research objective was to map historical biodiversity, identify hotspots, and assess areas for potential revegetation. - The data collected came from historical black maps, current iNaturalist data, and soil classification information. - The findings show that, pre-colonialism, the area was composed of herbaceous areas, wetlands, native shrubland, and tussock land, with key plants such as river, fern, tutu, and cabbage trees. - The post-earthquake analysis shows a transition from a residential area to patchy grasslands and swampy areas. - The findings also showed a strong relationship between historic sites and soil classifications, providing knowledge for past and future vegetation patterns and spread. - This map will be a valuable resource for conservation efforts and public engagement as the area transitions into a blue-green corridor.
In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit. This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen. The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed. The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data. The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens. A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.
The cartoon shows Christchurch obscured by ash. Text reads 'Christchurch recovery package' and below are the words 'Cash cloud'. Context - Beginning on the 6th of June the Puyehue-Cordon Caulle volcano has been erupting for more than a week. Drifting ash clouds have been interupting flights. On Thursday 23 June Prime Minister John Key, Canterbury Earthquake Recovery Minister Gerry Brownlee and representatives from engineering consultants Tonkin & Taylor announced the first part of the Government's long-awaited land report that revealed the fate of up to 5000 quake-damaged homes. These homes were in the 'red zone'. But 10,500 owners in the orange zone were left in limbo, with their properties requiring further assessment. One of the options presented to residents in the red zone, ideal for people with replacement policies, was the government bought your land, and you dealt directly with your insurers about your house. However they got a shock when insurers told them they won't replace their homes, they'll only repair them, even though they're earmarked for certain demolition. Quantity: 1 digital cartoon(s).
The September and February earthquakes were terrifying and devastating. In February, 185 people were killed (this number excludes post earthquake related deaths) and several thousand injured. Damage to infrastructure above and below ground in and around Christchurch was widespread and it will take many years and billions of dollars to rebuild. The ongoing effects of the big quakes and aftershocks are numerous, with the deepest impact being on those who lost family and friends, their livelihoods and homes. What did Cantabrians do during the days, weeks and months of uncertainty and how have we responded? Many grieved, some left, some stayed, some arrived, many shovelled (liquefaction left thousands of tons of silt to be removed from homes and streets), and some used their expertise or knowledge to help in the recovery. This book highlights just some of the projects staff and students from The Faculty of Environment, Society and Design have been involved in from September 2010 to October 2012. The work is ongoing and the plan is to publish another book to document progress and new projects.
Fear and humour increasingly drive the TV news. What was the most radical thing you did at school? Some Rangitoto College year 13 girls are upset they're being told to dress more modestly.Students and parents are accusing the school of encouraging "rape culture".A senior staff member from the school is said to have told Year 13 girls that what they're wearing is proving a distraction to their male teachers. Western Springs College which is also in Auckland has been mufti since the 1980s their principal Ivan Davis talks about their attitude to dress code. Displaced residents of Merivale Retirement village in Christchurch were told that they need to move out by April 1. A new facility that has replaced the earthquake damaged one won't have enough beds for everyone. The CEO of Age Concern Canterbury Simon Templeton talks about what measures are in place to look after these vulnerable elderly people. Thirty-six per cent of 16-24 year-olds in full-time education in the UK are not touching booze. They're joining teetotal clubs and opting for alcohol-free accomodation. High levels of debt and the pressure to do well means that students are going out less. Will alchol go completely out of fashion one day? The Nest security alarm system has a microphone in it. Although you probably wouldn't know that because it's not stated on the gadget's specifications. It's a Google product and the company says it never meant to keep the listening devices a secret. UK privacy campaign group Big Brother Watch says it's deceptive and it's normalising the disturbing notion of tech giants constant listening within the privacy of our homes.
The previously unknown Greendale Fault ruptured to the ground surface, causing up to 5 metres horizontal and 1 metre vertical permanent offset of the ground, during the September 2010 Darfield (Canterbury) earthquake. Environment Canterbury commissioned GNS Science, with help from the University of Canterbury, to define a fault avoidance zone and to estimate the fault recurrence interval. There is little evidence for past movement on the fault in the past 16,000 years. However, because of the uncertainties involved, a conservative approach was taken and the fault has been categorised as a Recurrence Interval Class IV fault (a recurrence interval of between 5,000 and 10,000 years). A PhD study by a University of Canterbury student will work towards refining the Recurrence Interval Class over the next three years. Taking a risk-based approach, the Ministry for the Environment Active Fault Guidelines recommend that normal residential development be allowed within the fault avoidance zone for faults of this Recurrence Interval Class, but recommends restrictions for larger community buildings or facilities with post-disaster functions. The report is assisting Selwyn District Council in granting consents for rebuilding houses on or near the Greendale Fault that were damaged by permanent distortion of the ground due to the fault rupture in the September 2010 earthquake. The report provides specific recommendations for building on or close to the Greendale Fault, which are being implemented by Selwyn District Council. See Object Overview for background and usage information.
This thesis describes the strategies for earthquake strengthening vintage clay bricks unreinforced masonry (URM) buildings. URM buildings are well known to be vulnerable to damage from earthquake-induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent destructive natural disaster that resulted in the deaths of 185 people. The earthquake events had drawn people’s attention when URM failure and collapse caused about 39 of the fatality. Despite the poor performance of URM buildings during the 2010/2011 Canterbury earthquakes, a number of successful case study buildings were identified and their details research in-depth. In order to discover the successful seismic retrofitting techniques, two case studies of retrofitted historical buildings located in Christchurch, New Zealand i.e. Orion’s URM substations and an iconic Heritage Hotel (aka Old Government Building) was conducted by investigating and evaluating the earthquake performance of the seismic retrofitting technique applied on the buildings prior to the 2010/2011 Canterbury earthquakes and their performance after the earthquakes sequence. The second part of the research reported in this thesis was directed with the primary aim of developing a cost-effective seismic retrofitting technique with minimal interference to the vintage clay-bricks URM buildings. Two retrofitting techniques, (i) near-surface mounted steel wire rope (NSM-SWR) with further investigation on URM wallettes to get deeper understanding the URM in-plane behaviour, and (ii) FRP anchor are reported in this research thesis.
Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/
The Canterbury earthquakes in New Zealand caused significant damage to a number of reinforced concrete (RC) walls and subsequent research that has been conducted to investigate the design provisions for lightly reinforced RC walls and precast concrete wall connection details is presented. A combination of numerical modelling and large-scale tests were conducted to investigate the seismic behaviour of lightly RC walls. The model and test results confirmed the observed behaviour of an RC wall building in Christchurch that exhibited a single flexural crack and also raised questions regarding the ability of current minimum reinforcement requirements to prevent the concentration of inelastic deformation at a small number of flexural cracks. These findings have led to changes to the minimum vertical reinforcement limits for RC walls in in the Concrete Structures Standard (NZS 3101:2006), with increased vertical reinforcement required in the end region of ductile RC walls. An additional series of wall tests were conducted to investigate the seismic behaviour of panel-to-foundation connections in singly reinforced precast concrete panels that often lack robustness. Both in-plane and out-of-plane panel tests were conducted to assess both grouted connections and dowel connections that use shallow embedded inserts. The initial test results have confirmed some of the previously identified vulnerabilities and tests are ongoing to refine the connection designs. http://www.aees.org.au/downloads/conference-papers/2015-2/
Unreinforced masonry (URM) is a construction type that was commonly adopted in New Zealand between the 1880s and 1930s. URM construction is evidently vulnerable to high magnitude earthquakes, with the most recent New Zealand example being the 22 February 2011 Mw6.3 Christchurch earthquake. This earthquake caused significant damage to a majority of URM buildings in the Canterbury area and resulted in 185 fatalities. Many URM buildings still exist in various parts of New Zealand today, and due to their likely poor seismic performance, earthquake assessment and retrofit of the remaining URM building stock is necessary as these buildings have significant architectural heritage and occupy a significant proportion of the nation’s building stock. A collaborative research programme between the University of Auckland and Reid Construction Systems was conducted to investigate an economical yet effective solution for retrofitting New Zealand’s existing URM building stock. This solution adopts the shotcrete technique using an Engineered Cementitious Composite (ECC), which is a polyvinyl alcohol fibre reinforced mortar that exhibits strain hardening characteristics. Collaborations have been formed with a number of consulting structural engineers throughout New Zealand to develop innovative and cost effective retrofit solutions for a number of buildings. Two such case studies are presented in this paper. http://www.concrete2013.com.au/technical-program/
Throughout 2010 and 2011, the city of Christchurch, New Zealand, suffered a series of devastating earthquakes that caused serious damage to the city. This study examines the effect these earthquakes have had on the sport of swimming in Christchurch. It specifically focuses on three different aspects of the swimming industry: indoor competitive swimming, open water swimming and learning to swim. It reports on the industry prior to the earthquakes before examining the developments subsequent to the shakes. The effects on both facilities and participation numbers were examined. Results showed that many indoor swimming facilities were lost which had significant flow-on effects. In addition, many beaches were out of bounds and almost half of the schools in Canterbury lost the use of their own swimming pools. In terms of participation numbers, results showed that while there was a decrease in the number of indoor competitive swimmers, Canterbury clubs were still highly competitive and their rankings at events either remained similar or bettered during and after the period of the earthquakes. On the other hand, an increase in the number of participants was seen in swimming lessons as temporary pools were constructed and subsidies were offered to cover transport and lesson costs. Open water swimming, however, seems to have been relatively unaffected by the earthquakes.This report was made possible through Lincoln University’s Summer Scholarship programme. The authors would also like to acknowledge those anonymous interviewees who provided some valuable insight into the swimming industry in Christchurch.
There are many swaths of land that are deemed unsuitable to build on and occupy. These places, however, are rarely within an established city. The Canterbury earthquakes of 2010 and 2011 left areas in central Christchurch with such significant land damage that it is unlikely to be re-inhabited for a considerable period of time. These areas are commonly known as the ‘Red Zone’.This thesis explores redevelop in on volatile land through innovative solutions found and adapted from the traditional Indonesian construction techniques. Currently, Indonesia’s vernacular architecture sits on the verge of extinction after a cultural shift towards the masonry bungalow forced a rapid decline in their occupation and construction. The 2004 Indian Ocean earthquake and tsunami illustrated the bungalows’ poor performance in the face of catastrophic seismic activity, being outperformed by the traditional structures. This has been particularly evident in the Rumah Aceh construction of the Aceh province in Northern Sumatra. Within a New Zealand context an adaptation and modernisation of the Rumah Aceh construction will generate an architectural response not currently accepted under the scope of NZS 3604:2011; the standards most recent revision following the Canterbury earthquake of 2010 concerning timber-based seismic performance. This architectural exploration will further address light timber structures, their components, sustainability and seismic resilience. Improving new builds’ durability as New Zealand moves away from the previously promoted bungalow model that extends beyond residential and into all aspects of New Zealand built environment.
<strong>Natural disasters are often unpredictable and are happening frequently. Some natural disasters cause damage to communities, resulting in displaced individuals. Due to this there is a need for shelter, however, there are many unknown factors. These include unknown demographics, a strain on time, cost, and resources, and the unknown location. This study begins by identifying a lack of identity and personality in existing post-disaster shelter designs, including the example of Linwood Park from the Christchurch 2011 earthquake. Further research shows the lack of personalisation within shelters, along with addressing key requirements needed for shelters. While providing the basic needs is essential, this thesis also addresses how personalisation can impact a space. Taking bach architecture as a driver for a basic, yet unique approach to temporary accommodation, Lake Clearwater Settlement was used as a case study. Through surveys, interviews, and a reflective design process, the importance of embracing identity emerges as a key element in fostering dignity, livelihood, and a sense of self in displaced individuals.</strong>This thesis explores innovative approaches to post-disaster shelter design with a focus on accommodating the unique needs and individuality of displaced individuals. From challenging conventional shelter concepts to embracing self-design and community involvement, the research addresses the question of how interior and exterior features can cater to the diverse requirements of those affected by natural disasters.
A series of earthquakes has forced Christchurch to re-plan and rebuild. Discussions about rebuilding strategies have emphasized the intention of making it a city for the future, sustainable and vibrant. This paper discusses the relationship between microclimate and urban culture in Christchurch based upon the concept of urban comfort. It explores the relationships between environment, people and culture to help understand the local requirements for urban landscape design. In this paper we claim that cultural requirements also should be taken into account when looking for sustainable strategies. A distinctive feature of this research is its focus on the way people are adapting to both surviving prequake and new post‐quake environments. Preliminary findings from the first year of field work using participant observation and 61 in‐depth interviews with Christchurch residents are presented. The interviews were carried out in a variety of urban settings including: established sites (places sustaining relatively little damage) and emerging sites (those requiring rebuilding) during 2011‐2012. Evidence from the interviews highlight future challenges regarding sustainability and urban comfort issues. Post‐quake Christchurch presents a remarkable opportunity to design an urban landscape which provides environmental, economic, social and cultural sustainability. However, to achieve successful outcomes it is fundamental to respond to the local culture. Field data suggest that the strong connections between urban and rural settings present in local culture, lifestyle and landscape generate a particular aesthetic and recreation preference for urban spaces, which should be considered in the urban landscape design strategies.
"Prior to the devastating 2010-2011 Canterbury earthquakes, the city of Christchurch was already exhibiting signs of a housing affordability crisis. The causes and symptoms were similar to those being experienced in Auckland, but the substantial damage to the housing stock caused by the earthquakes added new dimensions and impetus to the problem. Large swathes of the most affordable housing stock in the east of the city were effectively destroyed by the earthquakes. In itself this would have pushed the mean house price upwards, but compounding problems exacerbated the situation. These include the price effects of reduced supply of both rented and owned housing and increased demand from both displaced residents and an influx of rebuild workers. The need for additional temporary housing while repairs were undertaken and the associated insurance pay-outs bidding up rents with improved rental returns leading to increased interest in property investment. Land supply constraints and consenting issues inhibiting the build of new housing and political infighting and uncertainty regarding the future of parts of the city leading to a flight of development activity to peripheral locations and adjoining local authorities. Concerns that the erosion of the city council rating base combined with inadequacy of insurance cover for infrastructure will lead to large rates increases, increased development costs and reduced amenities and services in future years. These and other issuers will be elaborated on in this paper with a view to exploring the way forward for affordable housing Christchurch City."
The city of Christchurch, New Zealand, incurred significant damage due to a series of earthquakes in 2010 and 2011. The city had, by the late 2010s, regained economic and social normalcy after a sustained period of rebuilding and economic recovery. Through the concerted rebuilding effort, a modern central business district (CBD) with redesigned infrastructure and amenities was developed. The Christchurch rebuild was underpinned by a commitment of urban planners to an open and connected city, including the use of innovative technologies to gather, use and share data. As was the case elsewhere, the COVID-19 pandemic brought about significant disruptions to social and economic life in Christchurch. Border closures, lockdowns, trading limitations and other restrictions on movement led to changes in traditional consumer behaviors and affected the retail sector’s resilience. In this study, we used CBD pedestrian traffic data gathered from various locations to predict changes in retail spending and identify recovery implications through the lens of retail resilience. We found that the COVID-19 pandemic and its related lockdowns have driven a substantive change in the behavioral patterns of city users. The implications for resilient retail, sustainable policy and further research are explored.
At 4.35am on Saturday 4 September 2010, a magnitude 7.1 earthquake struck near the township of Darfield in Canterbury leading to widespread damage in Christchurch and the wider central Canterbury region. Though it was reported no lives were lost, that was not entirely correct. Over 3,000 animals perished as a result of the earthquake and 99% of these deaths would have been avoidable if appropriate mitigation measures had been in place. Deaths were predominantly due to zoological vulnerability of birds in captive production farms. Other problems included lack of provision of animal welfare at evacuation centres, issues associated with multiple lost and found pet services, evacuation failure due to pet separation and stress impact on dairy herds and associated milk production. The Canterbury Earthquake has highlighted concerns over a lack of animal emergency welfare planning and capacity in New Zealand, an issue that is being progressed by the National Animal Welfare Emergency Management Group. As animal emergency management becomes better understood by emergency management and veterinary professionals, it is more likely that both sectors will have greater demands placed upon them by national guidelines and community expectations to ensure provisions are made to afford protection of animals in times of disaster. A subsequent and more devastating earthquake struck the region on Monday 22 February 2011; this article however is primarily focused on the events pertaining to the September 4 event.
The Canterbury earthquake sequence in New Zealand’s South Island induced widespread liquefaction phenomena across the Christchurch urban area on four occasions (4 Sept 2010; 22 Feb; 13 June; 23 Dec 2011), that resulted in widespread ejection of silt and fine sand. This impacted transport networks as well as infiltrated and contaminated the damaged storm water system, making rapid clean-up an immediate post-earthquake priority. In some places the ejecta was contaminated by raw sewage and was readily remobilised in dry windy conditions, creating a long-term health risk to the population. Thousands of residential properties were inundated with liquefaction ejecta, however residents typically lacked the capacity (time or resources) to clean-up without external assistance. The liquefaction silt clean-up response was co-ordinated by the Christchurch City Council and executed by a network of contractors and volunteer groups, including the ‘Farmy-Army’ and the ‘Student-Army’. The duration of clean-up time of residential properties and the road network was approximately 2 months for each of the 3 main liquefaction inducing earthquakes; despite each event producing different volumes of ejecta. Preliminary cost estimates indicate total clean-up costs will be over NZ$25 million. Over 500,000 tonnes of ejecta has been stockpiled at Burwood landfill since the beginning of the Canterbury earthquakes sequence. The liquefaction clean-up experience in Christchurch following the 2010-2011 earthquake sequence has emerged as a valuable case study to support further analysis and research on the coordination, management and costs of large volume deposition of fine grained sediment in urban areas.
Research indicates that aside from the disaster itself, the next major source of adverse outcomes during such events, is from errors by either the response leader or organisation. Yet, despite their frequency, challenge, complexity, and the risks involved; situations of extreme context remain one of the least researched areas in the leadership field. This is perhaps surprising. In the 2010 and 2011 (Christchurch) earthquakes alone, 185 people died and rebuild costs are estimated to have been $40b. Add to this the damage and losses annually around the globe arising from natural disasters, major business catastrophes, and military conflict; there is certainly a lot at stake (lives, way of life, and our well-being). While over the years, much has been written on leadership, there is a much smaller subset of articles on leadership in extreme contexts, with the majority of these focusing on the event rather than leadership itself. Where leadership has been the focus, the spotlight has shone on the actions and capabilities of one person - the leader. Leadership, however, is not simply one person, it is a chain or network of people, delivering outcomes with the support of others, guided by a governance structure, contextualised by the environment, and operating on a continuum across time (before, during, and after an event). This particular research is intended to examine the following: • What are the leadership capabilities and systems necessary to deliver more successful outcomes during situations of extreme context; • How does leadership in these circumstances differ from leadership during business as usual conditions; • Lastly, through effective leadership, can we leverage these unfortunate events to thrive, rather than merely survive?
Predicting building collapse due to seismic motion is critical in design and more so after a major event. Damaged structures can appear sound, but collapse under following major events. There can thus be significant risk in decision making after a major seismic event concerning the safe occupation of a building or surrounding areas, versus the unknown impact of unknown major aftershocks. Model-based pushover analyses are effective if the structural properties are well understood, which is not valid post-event when this risk information is most useful. This research combines Hysteresis Loop Analysis (HLA) structural health monitoring (SHM) and Incremental Dynamic Analysis (IDA) methods to determine collapse capacity and probability of collapse for a specific structure, at any time, a range of earthquake excitations to ensure robustness. The nonlinear dynamic analysis method presented enables constant updating of building performance predictions using post-event SHM results. The resulting combined methods provide near real-time updating of collapse fragility curves as events progress, quantifying the change of collapse probability or seismic induced losses for decision-making - a novel, higher resolution risk analysis than previously available. The methods are not computationally expensive and there is no requirement for a validated numerical model. Results show significant potential benefits and a clear evolution of risk. They also show clear need for extending SHM toward creating improved predictive models for analysis of subsequent events, where the Christchurch series of 2010-2011 had significant post-event aftershocks after each main event. Finally, the overall method is generalisable to any typical engineering demand parameter.
The objective of this study is to examine the influence of near-fault motions on liquefaction triggering in Christchurch and neighboring towns during the 2010-2011 Canterbury earthquake sequence (CES). The CES began with the 4 September 2010, Mw7.1 Darfield earthquake and included up to ten events that triggered liquefaction. However, most notably, widespread liquefaction was induced by the Darfield earthquake and the Mw6.2, 22 February 2011 Christchurch earthquake. Of particular relevance to this study is the forward directivity effects that were prevalent in the motions recorded during the Darfield earthquake, and to a much lesser extent, during the Christchurch earthquake. A 2D variant of the Richart-Newmark fatigue theory was used to compute the equivalent number of cycles (neq) for the ground motions, where volumetric strain was used as the damage metric. This study is unique because it considers the contribution and phasing of both the fault-normal and fault-parallel components of motion on neq and the magnitude scaling factor (MSF). It was found that when the fault-normal and fault-parallel motions were treated individually, the former yielded a lower neq than the latter. Additionally, when the combined effects of fault-normal and fault-parallel components were considered, it was found that the MSF were higher than those commonly used. This implies that motions containing near-fault effects are less demanding on the soil than motions that do not. This may be one of several factors that resulted in less severe liquefaction occurring during the Darfield earthquake than the Christchurch earthquake.
Asset management in power systems is exercised to improve network reliability to provide confidence and security for customers and asset owners. While there are well-established reliability metrics that are used to measure and manage business-as-usual disruptions, an increasing appreciation of the consequences of low-probability high-impact events means that resilience is increasingly being factored into asset management in order to provide robustness and redundancy to components and wider networks. This is particularly important for electricity systems, given that a range of other infrastructure lifelines depend upon their operation. The 2010-2011 Canterbury Earthquake Sequence provides valuable insights into electricity system criticality and resilience in the face of severe earthquake impacts. While above-ground assets are relatively easy to monitor and repair, underground assets such as cables emplaced across wide areas in the distribution network are difficult to monitor, identify faults on, and repair. This study has characterised in detail the impacts to buried electricity cables in Christchurch resulting from seismically-induced ground deformation caused primarily by liquefaction and lateral spread. Primary modes of failure include cable bending, stretching, insulation damage, joint braking and, being pulled off other equipment such as substation connections. Performance and repair data have been compiled into a detailed geospatial database, which in combination with spatial models of peak ground acceleration, peak ground velocity and ground deformation, will be used to establish rigorous relationships between seismicity and performance. These metrics will be used to inform asset owners of network performance in future earthquakes, further assess component criticality, and provide resilience metrics.
Peri-urban environments are critical to the connections between urban and rural ecosystems and their respective communities. Lowland floodplains are important examples that are attractive for urbanisation and often associated with the loss of rural lands and resources. In Christchurch, New Zealand, damage from major earthquakes led to the large-scale abandonment of urban residential properties in former floodplain areas creating a rare opportunity to re-imagine the future of these lands. This has posed a unique governance challenge involving the reassessment of land-use options and a renewed focus on disaster risk and climate change adaptation. Urban-rural tensions have emerged through decisions on relocating residential development, alternative proposals for land uses, and an unprecedented opportunity for redress of degraded traditional values for indigenous (Māori) people. Immediately following the earthquakes, existing statutory arrangements applied to many recovery needs and identified institutional responsibilities. Bespoke legislation was also created to address the scale of impacts. Characteristics of the approach have included attention to information acquisition, iterative assessment of land - use options, and a wide variety of opportunities for community participation. Challenges have included a protracted decision-making process with accompanying transaction costs, and a high requirement for coordination. The case typifies the challenges of achieving ecosystem governance where both urban and rural stakeholders have strong desires and an opportunity to exert influence. It presents a unique context for applying the latest thinking on ecosystem management, adaptation, and resilience, and offers transferable learning for the governance of peri-urban floodplains worldwide.
This paper describes part of an extensive experimental programme in progress at the University of Canterbury to develop Laminated Veneer Lumber (LVL) structural systems and connections for multistorey timber buildings in earthquake-prone areas. The higher mechanical properties of LVL, when compared to sawn timber, in addition to its low mass, flexibility of design and rapidity of construction, create the potential for increased use of LVL in multi-storey buildings. The development of these innovative ductile connections in LVL, proposed here for frame systems, have been based on the successful implementation of jointed ductile connections for precast concrete systems, started in the early 1990s with the PRESSS Program at the University of California, San Diego, further developed in Italy and currently under further refinement at the University of Canterbury. This paper investigates the seismic behaviour of the so-called “hybrid” connection, characterised by the combination of unbonded post-tensioned tendons and either external or internal energy dissipaters passing through the critical contact surface between the structural elements. Experimental results on hybrid exterior beam-to-column and column-to-foundation subassemblies under cyclic quasi-static unidirectional loading are presented. The proposed innovative solutions exhibit a very satisfactory seismic performance characterised by an appreciable energy dissipation capacity (provided by the dissipaters) combined with self-centring properties (provided by the unbonded tendons) and negligible damage of the LVL structural elements.