Search

found 1850 results

Videos, UC QuakeStudies

A video about the reopening of the city branch of the Punting on the Avon route, which has been closed since the 22 February 2011 earthquake. The video includes an interview with Mayor Bob Parker about tourism in Christchurch. He mentions that Australia has updated its travel advisory on Christchurch to say that it is as safe as the other cities in New Zealand. The video also includes footage of Parker poling a punt.

Images, UC QuakeStudies

A photograph of Robin Duff's house at 386 Oxford Terrace. The grass has not been mowed and one of the windows has been boarded up with plywood. A yellow sticker on the door indicates that the access to the house is restricted. There is also a sign in the window to the left, depicting a bulldozer with a line through it. The photographer comments, "Avon Loop resident Donna Allfrey made the sign for Duff".

Images, UC QuakeStudies

Detail of damage to the former Princess Cinema in New Brighton. Bricks have fallen from the wall, exposing the interior. The photographer comments, "This is the back of the old Princess Cinema in New Brighton after the earthquake in Christchurch, New Zealand on 22 February. The bricks seem to be just on the edge of falling. This building has now been knocked down as it was so dangerous".

Images, UC QuakeStudies

Damage to the front of the Cathedral of the Blessed Sacrament. Large cracks are visible in the stonework, and one side is supported by shipping containers and hay bales. The photographer comments, "The Cathedral of the Blessed Sacrament has a lot of cracking on the exterior and one column appears to be leaning to the right. To my non-expert eye it does look like the front could easily give way. Notice the broken supporting beam".

Images, UC QuakeStudies

Broken stained glass in a window of the ChristChurch Cathedral. The photographer comments, "I only managed to get one picture of the badly earthquake damaged Christchurch Cathedral and I did not want to get the buttresses holding it up like some Medieval siege engine, so I thought this one was perfect. Looking through the window notice that the adjacent wall has gone and the blue windows belong to an office block across the road".

Videos, UC QuakeStudies

A video of a tour of Lion Nathan's Canterbury Brewery, where employees are cleaning up after the 4 September 2010 earthquake. The video shows footage of Lion Nathan employees clearing away pallets of broken bottles and mopping up spilt beer. It also includes an interview with Neil Hinton, Lion Nathan Corporate Affairs Director, about the beer which has been sent down from Auckland, and the help they are giving to the City Mission.

Images, UC QuakeStudies

Damage to TJ's Kazbah in New Brighton. The east and north walls and part of the upper floor have collapsed, tipping rubble and the contents of the rooms out onto the street. The photographer comments, "The occupants of the business and rooms all managed to escape alive. A digger was used to make the building safe and then used to sift through the rubble for any surviving belongings. It was a very emotional time for the ex-occupants".

Images, UC QuakeStudies

The Cathedral of the Blessed Sacrament after the dome was removed. Large cracks are visible in the walls and in the dome's supporting structure, and the facade is supported by haybales and shipping containers. The photographer comments, "The main dome of the Cathedral of the Blessed Sacrament became unsafe after the February Christchurch earthquake - workmen have slowly been dismantling it. Now we are just left with the cracked and twisted walls that supported the beautiful dome".

Images, UC QuakeStudies

A photograph of Robin Duff's house at 386 Oxford Terrace. The grass has not been mowed and one of the windows has been boarded up with plywood. A yellow sticker on the door indicates that the access to the house is restricted. There is also a sign in the window to the left, depicting a bulldozer with a line through it. The photographer comments, "Avon Loop resident Donna Allfrey made the sign for Duff".

Audio, Radio New Zealand

A Christchurch primary school is moving into its permanent new home today, nine years after cliffs behind it collapsed during the city's earthquakes. Redcliffs School subsequently moved to a temporary location in the suburb of Sumner, but the new location will mean the school will return home to Redcliffs, after a land swap with the local park. The move comes after in 2016, the then National Government, overturned its own decision to close the school. Christchurch reporter Anan Zaki spoke to principal Rose McInerney ahead of today's move.

Audio, Radio New Zealand

Media commentator Andrew Holden joins Kathryn to talk about the move by Discovery Inc to buy Mediaworks' TV operations. When it comes to the TV news, why does TVNZ keep out-rating Newshub? And Munted, Stuff's video series for the 10th anniversary of the Christchurch earthquake, revisits 200 hours of original video footage in a new series narrated by Philip Matthews. Andrew Holden is a journalist for more than 30 years including five as Editor of The Press (in Christchurch) and four as Editor-in-Chief of The Age in Melbourne.

Audio, Radio New Zealand

Topics - it's been described as the 'Downton Effect' - a revival of more formal dinner parties as the British try to bring back fine dining. Today we learned that insurance companies have completed just 15 per cent of rebuilds and 10 per cent of over-cap repairs more than three years after the Canterbury earthquakes. A series of rallies are being held in five Australian cities today by New Zealanders protesting against legislation which denies them rights to welfare. Commuters are cautiously optimistic about a radical revamp proposed for Wellington's rush-hour rail service.

Audio, Radio New Zealand

Tests have revealed that New Zealand's latest building designs will stand up to earthquakes of a greater intensity than the ones that occurred in Christchurch and Kaikōura. Researchers from the University of Auckland and Canterbury, in collaboration with QuakeCoRE and Tongji University in China, built a two-storey concrete building and put it on one of the largest shake tables in the world. All of the building's details were based on existing buildings in Wellington and Christchurch. The project leader is the University of Auckland's Dr Rick Henry. He talks to Guyon Espiner.

Images, eqnz.chch.2010

Damage to the Hotel Grand Chancellor can be seen in the middle. At the bottom left is the lift shaft (now fully demolished) of the CTV building which claimed over 100 lives when it collapsed in the earthquake. Taken during a scenic flight over Christchurch, New Zealand, 3 months after the deadly earthquake of 22 February, 2011. Much of the inn...

Images, eqnz.chch.2010

Hotel Grand Chancellor - Leaning 1m to the east, demolition will start about mid June and is expected to take 10 months to complete at a cost of approx NZ$10m. It will be the biggest & tallest demolition project in New Zealand. Taken during a scenic flight over Christchurch, New Zealand, 3 months after the deadly earthquake of 22 February, ...

Images, eqnz.chch.2010

The Church of the Good Shepherd (Philips Street) is a fine example of High Victorian Gothic architecture and was designed by Benjamin Woolfield Mountfort in 1884. It has suffered some major damage during 6.3 quake that hit Christchurch 22 February 2011. From Psalm 23 (King James Version) The Lord is my shepherd; I shall not want. ...

Research papers, The University of Auckland Library

Quick and reliable assessment of the condition of bridges in a transportation network after an earthquake can greatly assist immediate post-disaster response and long-term recovery. However, experience shows that available resources, such as qualified inspectors and engineers, will typically be stretched for such tasks. Structural health monitoring (SHM) systems can therefore make a real difference in this context. SHM, however, needs to be deployed in a strategic manner and integrated into the overall disaster response plans and actions to maximize its benefits. This study presents, in its first part, a framework of how this can be achieved. Since it will not be feasible, or indeed necessary, to use SHM on every bridge, it is necessary to prioritize bridges within individual networks for SHM deployment. A methodology for such prioritization based on structural and geotechnical seismic risks affecting bridges and their importance within a network is proposed in the second part. An example using the methodology application to selected bridges in the medium-sized transportation network of Wellington, New Zealand is provided. The third part of the paper is concerned with using monitoring data for quick assessment of bridge condition and damage after an earthquake. Depending on the bridge risk profile, it is envisaged that data will be obtained from either local or national seismic monitoring arrays or SHM systems installed on bridges. A method using artificial neural networks is proposed for using data from a seismic array to infer key ground motion parameters at an arbitrary bridges site. The methodology is applied to seismic data collected in Christchurch, New Zealand. Finally, how such ground motion parameters can be used in bridge damage and condition assessment is outlined. AM - Accepted manuscript

Research papers, Lincoln University

Recovery from disasters is a significant issue faced by all countries in the world at various times. Governments, including central and local governments, are the key actors regarding post-disaster recovery because they have the authority and responsibility to rescue affected people and recover affected areas (Yang, 2010). Planning is a critical step in the recovery process and provides the basis for defining a shared vision for recovery, clear objectives and intended results. Subsequently, the concept of collaborative planning and ‘build back better’ are highly desirable in recovery planning. However, in practice, these concepts are difficult to achieve. A brief description of the recovery planning in Christchurch City following the Canterbury earthquakes 2011 is provided as an example and comparison. This research aims to analyse the planning process to develop a post-disaster recovery plan in Indonesia using Mataram City’s recovery plan following the Lombok Earthquakes 2018 as the case study. It will emphasise on the roles of the central and local governments and whether they collaborate or not, and the implications of decentralisation for recovery planning. The methodology comprised a combination of legislation analysis and semi-structure interviews with the representatives of the central and local governments who were involved in the planning process. The results indicate that there was no collaboration between the central and local governments when developing the recovery plan, with the former tend to dominate and control the planning process. It is because there are regulatory and institutional problems concerning disaster management in Indonesia. In order to improve the implementation of disaster management and develop a better recovery plan, some recommendations are proposed. These include amendments the disaster management law and regulations to provide a clear guideline regarding the roles and responsibilities of both the central and local governments. It is also imperative to improve the capacity and capability of the local governments in managing disaster.

Research papers, Lincoln University

Following the 2010 and 2011 earthquakes Christchurch is undergoing extensive development on the periphery of the city. This has been driven in part by the large numbers of people who have lost their homes. Prior to the earthquakes, Christchurch was already experiencing placeless subdivisions and now these are being rolled out rapidly thanks to the efficiency of a formula that has been embraced by the Council, developers and the public alike. However, sprawling subdivisions have a number of issues including inefficient land use, limited housing types, high dependence on motor vehicles and low levels of resilience and no sense of place. Sense of place is of particular interest due to its glaring absence from new subdivisions and its growing importance in the literature. Research shows that sense of place has benefits to our feeling of belonging, well-being, and self-identity, particularly following a disaster. It improves the resilience and sustainability of our living environment and fosters a connection to the landscape thereby making us better placed to respond to future changes. Despite these benefits, current planning models such as new urbanism and transit-oriented design tend to give sense of place a low priority and as a result it can get lost. Given these issues, the focus of this research is “can landscape driven sense of place drive subdivision design without compromising on other urban planning criteria to produce subdivisions that address the issues of sprawl, as well as achieving the benefits associated with a strong sense of place that can improve our overall quality of life?” Answering this question required a thorough review of current urban planning and sense of place literature. This was used to critique existing subdivisions to gain a thorough understanding of the issues. The outcomes of this led to extensive design exploration which showed that, not only is it possible to design a subdivision with sense of place as the key driver but by doing this, the other urban planning criteria become easier to achieve.

Research papers, Lincoln University

Nature has endowed New Zealand with unique geologic, climatic, and biotic conditions. Her volcanic cones and majestic Southern Alps and her verdant plains and rolling hills provide a landscape as rugged and beautiful as will be found anywhere. Her indigenous fauna and flora are often quite different from that of the rest of the world and consequently have been of widespread interest to biologists everywhere. Her geologic youth and structure and her island climate, in combination with the biological resources, have made a land which is ecologically on edge. These natural endowments along with the manner in which she has utilized her land, have given New Zealand some of the most spectacular and rapid erosion to be found. It is quite evident that geologic and climatic conditions combine to give unusually high rates of natural erosion. Present topographic features indicate the past occurrence of large-scale flooding as well. Prior to the arrival of the Maori, it is very likely that most of the land mass of New Zealand below present bush lines was covered with indigenous bush or forest. Forest fires of a catastrophic nature undoubtedly occurred as a result of lightning, and volcanic eruptions. The exposed soils left by these catastrophes contributed to natural deterioration. While vast areas of forest cover were destroyed, they probably were healed by nature with forest or with grass or herbaceous cover. Further, it is probable that large areas in the mountains were, as they are now, subject to landslides and slipping due to earthquakes and excessive local rainfall. Again, the healing process was probably rapid in most of such exposed areas.

Research papers, University of Canterbury Library

Geological research in the immediate aftermath of the 2016 Kaikōura Earthquake, New Zealand, was necessary due to the importance and perishability of field data. It also reflects a real desire on the part of researchers to contribute not only to immediate scientific understanding but also to the societal recovery effort by enhancing knowledge of the event for the benefit of affected communities, civil defence organizations and regional and national decision makers. This commitment to outreach and engagement is consistent with the recent IAPG statement of Geoethics. More immediately, it was informed by experience of the 2010-2011 Canterbury Earthquake sequence. After that earlier disaster, intense interactions between researchers and various response agencies as well as local communities informed the development and dissemination of a set of ethical guidelines for researchers immediately following the Mw7.8 14 November 2016 Kaikōura Earthquake. In this presentation, I argue that ethical engagement of this kind is the key to gathering high quality research data immediately after the event. Creating trusting and mutually respectful, mutually beneficial relationships is also vital to ongoing engagement to facilitate further “in depth” research in collaboration with communities.

Research papers, University of Canterbury Library

Structural members made of laminated veneer lumber (LVL) in combination with unbonded post-tensioning have recently been proposed, which makes it possible to design moment-resisting frames with longer spans for multi-storey timber buildings. It has been shown that prefabricated and prestressed timber structures can be designed to have excellent seismic resistance, with enhanced re-centring and energy dissipation characteristics. The post-tensioning provides re-centring capacity while energy is dissipated through yielding of mild steel dissipating devices. This paper summarizes an experimental investigation into the seismic response of LVL columns to bi-directional seismic loading, performed as part of a research programme on timber structures at the University of Canterbury. The experimental investigation includes testing under both quasi-static cyclic and pseudo-dynamic protocols. The results show excellent seismic performance, characterized by negligible damage of the structural members and small residual deformations, even under the combined effect of loading in two directions. Energy is dissipated mostly through yielding of external dissipators connecting the column and the foundation, which can be easily removed and replaced after an earthquake. Since post-tensioning can be economically performed on site, the system can be easily implemented in multi-storey timber buildings

Research papers, The University of Auckland Library

The Catholic Cathedral is classified as a category 1 listed heritage building constructed largely of unreinforced stone masonry, and was significantly damaged in the recent Canterbury earthquakes of 2010 and 2011. In the 2010 event the building presented slight to moderta damage, meanwhile in the 2011 one experienced ground shaking in excess of its capacity leading to block failures and partial collapse of parts of the building, which left the building standing but still posing a significant hazard. In this paper we discuss the approach to develop the earthquake analysis of the building by 3D numerical simulations, and the results are compared/calibrated with the observed damage of the 2010 earthquake. Very accurate records were obtained during both earthquakes due to a record station located least than 80 m of distance from the building and used in the simulations. Moreover it is included in the model the soil structure interaction because it was observed that the ground and foundation played an important role on the seismic behavior of the structure. A very good agreement was found between the real observed damage and the nonlinear dynamic simulations described trough inelastic deformation (cracking) and building´s performance.

Research papers, The University of Auckland Library

Micro - electro - mechanical system (MEMS) based accelerometers are now frequently used in many different parts of our day - to - day lives. It is also increasingly being used for structural testing applications. Researchers have had res ervation of using these devices as they are relatively untested, but now with the wider adoption, it provides a much cheaper and more versatile tool for structural engineering researchers. A number of damaged buildings in the Christchurch Central Business District (CBD) were instrumented with a number of low - cost MEMS accelerometers after the major Christchurch earthquakes. The accelerometers captured extremely high quality building response data as the buildings experienced thousands of aftershocks. This d ata set was amongst one of only a handful of data set s available around the world which provides building response data subjected to real ground motion. Furthermore, due to technological advances, a much larger than usual number of accelerometers has been deployed making the data set one of the most comprehensive available. This data set is utilised to extract modal parameters of the buildings. This paper summarises the operating requirements and preference for using such accelerometers for experimental mod al analysis. The challenges for adapting MEMS based devices for successful modal parameters identification are also discussed.

Images, eqnz.chch.2010

Today was the first time I have been to the earthquake memorial since it was completed and opened on 22nd February 2017, six years after the devastating quake that killed the 185 that are named on this wall. I knew two of the people on the list.

Images, eqnz.chch.2010

Awaiting the demolition ball! See the hole punched in by the neighbouring building (now demolished) during the February 22 2011 earthquake. This building is leaning to the north (left) while it's now demolished neighbour was leaning to the south (right). All because the crap land gave way underneath!

Research papers, University of Canterbury Library

When disasters and crises, both man-made and natural, occur, resilient higher education institutions adapt in order to continue teaching and research. This may necessitate the closure of the whole institution, a building and/or other essential infrastructure. In disasters of large scale the impact can be felt for many years. There is an increasing recognition of the need for disaster planning to restructure educational institutions so that they become more resilient to challenges including natural disasters (Seville, Hawker, & Lyttle, 2012).The University of Canterbury (UC) was affected by seismic events that resulted in the closure of the University in September 2010 for 10 days and two weeks at the start of the 2011 academic year This case study research describes ways in which e-learning was deployed and developed by the University to continue and even to improve learning and teaching in the aftermath of a series of earthquakes in 2010 and 2011. A qualitative intrinsic embedded/nested single case study design was chosen for the study. The population was the management, support staff and educators at the University of Canterbury. Participants were recruited with purposive sampling using a snowball strategy where the early key participants were encouraged to recommend further participants. Four sources of data were identified: (1) documents such as policy, reports and guidelines; (2) emails from leaders of the colleges and academics; (3) communications from senior management team posted on the university website during and after the seismic activity of 2010 and 2011; and (4) semi-structured interviews of academics, support staff and members of senior management team. A series of inductive descriptive content analyses identified a number of themes in the data. The Technology Acceptance Model 2 (Venkatesh & Davis, 2000) and the Indicator of Resilience Model (Resilient Organisations, 2012) were used for additional analyses of each of the three cases. Within the University case, the cases of two contrasting Colleges were embedded to produce a total of three case studies describing e-learning from 2000 - 2014. One contrast was the extent of e-learning deployment at the colleges: The College of Education was a leader in the field, while the College of Business and Law had relatively little e-learning at the time of the first earthquake in September 2010. The following six themes emerged from the analyses: Communication about crises, IT infrastructure, Availability of e-learning technologies, Support in the use of e-learning technologies, Timing of crises in academic year and Strategic planning for e-learning. One of the findings confirmed earlier research that communication to members of an organisation and the general public about crises and the recovery from crises is important. The use of communication channels, which students were familiar with and already using, aided the dissemination of the information that UC would be using e-learning as one of the options to complete the academic year. It was also found that e-learning tools were invaluable during the crises and facilitated teaching and learning whilst freeing limited campus space for essential activities and that IT infrastructure was essential to e-learning. The range of e-learning tools and their deployment evolved over the years influenced by repeated crises and facilitated by the availability of centrally located support from the e-Learning support team for a limited set of tools, as well as more localised support and collaboration with colleagues. Furthermore, the reasons and/or rate of e-learning adoption in an educational institution during crises varied with the time of the academic year and the needs of the institution at the time. The duration of the crises also affected the adoption of e-learning. Finally, UC’s lack of an explicit e-learning strategy influenced the two colleges to develop college-specific e-learning plans and those College plans complemented the incorporation of e-learning for the first time in the University’s teaching and learning strategy in 2013. Twelve out of the 13 indicators of the Indicators of Resilience Model were found in the data collected for the study and could be explained using the model; it revealed that UC has become more resilient with e-learning in the aftermath of the seismic activities in 2010 and 2011. The interpretation of the results using TAM2 demonstrated that the adoption of technologies during crises aided in overcoming barriers to learning at the time of the crisis. The recommendations from this study are that in times of crises, educational institutions take advantage of Cloud computing to communicate with members of the institution and stakeholders. Also, that the architecture of a university’s IT infrastructure be made more resilient by increasing redundancy, backup and security, centralisation and Cloud computing. In addition, when under stress it is recommended that new tools are only introduced when they are essential.

Images, eqnz.chch.2010

The small wharf area of the now gone Pleasant Point Yacht Club has already been taken over by the Pied Shags (cormorants). It is under water now except for low tide. Note the dead pine tree in background. Many have died because of the salt water their roots are in.

Research papers, University of Canterbury Library

Current research in geotechnical engineering at the University of Canterbury includes a number of laboratory testing programmes focussed on understanding the behaviour of natural soil deposits in Christchurch during the 2010-2011 Canterbury Earthquake Sequence. Many soils found in Christchurch are sands or silty sands with little to no plasticity, making them very difficult to sample using established methods. The gel-push sampling methodology, developed by Kiso-Jiban Consultants in Japan, was developed to address some of the deficiencies of existing sampling techniques and has been deployed on two projects in Christchurch. Gel push sampling is carried out with a range of samplers which are modified versions of existing technology, and the University of Canterbury has acquired three versions of the tools (GP-S, GP-Tr, GP-D). Soil samples are extracted from the bottom of a freshly drilled borehole and are captured within a liner barrel, close to 1m in length. A lubricating polymer gel coats the outside of the soil sample as it enters the liner barrel. The frictional rubbing which normally occurs on the sides of the soil samples using existing techniques is eliminated by the presence of the polymer gel. The operation of the gel-push samplers is significantly more complicated than conventional push-tube samplers, and in the initial trials a number of operational difficulties were encountered, requiring changes to the sampling procedures. Despite these issues, a number of high quality soil samples were obtained on both projects using the GP-S sampler to capture silty soil. Attempts were made to obtain clean sands using a different gel-push sampler (GP-TR) in the Red Zone. The laboratory testing of these sands indicated that they were being significantly disturbed during the sampling and/or transportation procedures. While it remains too early to draw definitive conclusions regarding the performance of the gel-push samplers, the methodology has provided some promising results. Further trialling of the tools are required to refine operating procedures understand the full range of soil conditions which can be successfully sampled using the tools. In parallel with the gel-push trials, a Dames and Moore fixed-piston sampler has been used by our research partners from Berkeley to obtain soil samples at a number of sites within Christchurch. This sampler features relatively short (50cm), thin-walled liner barrels which is advanced into the ground under the action of hydraulic pressure. By reducing the overall length of the soil being captured, the disturbance to the soil as it enters the liner barrel is significantly reduced. The Dames and Moore sampler is significantly easier to operate than the gel-push sampler, and past experience has shown it to be successful in soft, plastic materials (i.e. clays and silty clays). The cyclic resistance of one silty clay obtained using both the gel-push and Dames & Moore samplers has been found to be very similar, and ongoing research aims to establish whether similar results are obtained for different soil types, including silty materials and clean sands.