Merrivale Mall continues after the massive aftershock sustained by Christchurch on 22nd February 2011.
Kilmore St and Barbadoes St Intersection
Great place for a Coffee and great homemade baking - Say Hi to Wendy for me!!
Fitzgerald Ave
Kilmore St and Barbadoes St Intersection
Kilmore St and Barbadoes St Intersection
Kilmore St and Barbadoes St Intersection
Christchurch Earthquake Aftermath PWS-2010-09-09-DSC02065
Christchurch Earthquake Aftermath PWS-2010-09-09-DSC02063
Christchurch Earthquake Aftermath PWS-2010-09-09-DSC02061
Screen captures from TV3 and Natasha Utting Love you all - see the video at www.3news.co.nz/Inside-Christchurch-Part-One/tabid/817/ar... 7-09-2010 10-35-09 pm
Screen captures from TV3 and Natasha Utting Love you all - see the video at www.3news.co.nz/Inside-Christchurch-Part-One/tabid/817/ar... 7-09-2010 10-13-54 pm
Christchurch Earthquake Aftermath PWS-2010-09-09-DSC02064
Non-structural elements (NSEs) have frequently proven to contribute to significant losses sustained from earthquakes in the form of damage, downtime, injury and death. In New Zealand (NZ), the 2010 and 2011 Canterbury Earthquake Sequence (CES), the 2013 Seddon and Cook Strait earthquake sequence and the 2016 Kaikoura earthquake were major milestones in this regard as significant damage to building NSEs both highlighted and further reinforced the importance of NSE seismic performance to the resilience of urban centres. Extensive damage in suspended ceilings, partition walls, façades and building services following the CES was reported to be partly due to erroneous seismic design or installation or caused by intervening elements. Moreover, the low-damage solutions developed for structural systems sometimes allow for relatively large inter-story drifts -compared to conventional designs- which may not have been considered in the seismic design of NSEs. Having observed these shortcomings, this study on suspended ceilings was carried out with five main goals: i) Understanding the seismic performance of the system commonly used in NZ; ii) Understanding the transfer of seismic design actions through different suspended ceiling components, iii) Investigating potential low-damage solutions; iii) Evaluating the compatibility of the current ceiling system with other low-damage NSEs; and iv) Investigating the application of numerical analysis to simulate the response of ceiling systems. The first phase of the study followed a joint research work between the University of Canterbury (UC) in NZ, and the Politecnico Di Milano, in Italy. The experimental ceiling component fragility curves obtained in this existing study were employed to produce analytical fragility curves for a perimeter-fixed ceiling of a given size and weight, with grid acceleration as the intensity measure. The validity of the method was proven through comparisons between this proposed analytical approach with the recommended procedures in proprietary products design guidelines, as well as experimental fragility curves from other studies. For application to engineering design practice, and using fragility curves for a range of ceiling lengths and weights, design curves were produced for estimating the allowable grid lengths for a given demand level. In the second phase of this study, three specimens of perimeter-fixed ceilings were tested on a shake table under both sinusoidal and random floor motion input. The experiments considered the relationship between the floor acceleration, acceleration of the ceiling grid, the axial force induced in the grid members, and the effect of boundary conditions on the transfer of these axial forces. A direct correlation was observed between the axial force (recorded via load cells) and the horizontal acceleration measured on the ceiling grid. Moreover, the amplification of floor acceleration, as transferred through ceiling components, was examined and found (in several tests) to be greater than the recommended factor for the design of ceilings provided in the NZ earthquake loadings standard NZS1170.5. However, this amplification was found to be influenced by the pounding interactions between the ceiling grid members and the tiles, and this amplification diminished considerably when the high frequency content was filtered out from the output time histories. The experiments ended with damage in the ceiling grid connection at an axial force similar to the capacity of these joints previously measured through static tests in phase one. The observation of common forms of damage in ceilings in earthquakes triggered the monotonic experiments carried out in the third phase of this research with the objective of investigating a simple and easily applicable mitigation strategy for existing or new suspended ceilings. The tests focused on the possibility of using proprietary cross-shaped clip elements ordinarily used to provide seismic gap as a strengthening solution for the weak components of a ceiling. The results showed that the solution was effective under both tension and compression loads through increasing load bearing capacity and ductility in grid connections. The feasibility of a novel type of suspended ceiling called fully-floating ceiling system was investigated through shaking table tests in the next phase of this study with the main goal of isolating the ceiling from the surrounding structure; thereby arresting the transfer of associated seismic forces from the structure to the ceiling. The fully-floating ceiling specimen was freely hung from the floor above lacking any lateral bracing and connections with the perimeter. Throughout different tests, a satisfactory agreement between the fully-floating ceiling response and simple pendulum theory was demonstrated. The addition of isolation material in perimeter gaps was found effective in inducing extra damping and protecting the ceiling from pounding impact; resulting in much reduced ceiling displacements and accelerations. The only form of damage observed throughout the random floor motion tests and the sinusoidal tests was a panel dislodgement observed in a test due to successive poundings between the ceiling specimen and the surrounding beams at resonant frequencies. Partition walls as the first effective NSE in direct interaction with ceilings were the topic of the final experimental phase. Low-damage drywall partitions proposed in a previous study in the UC were tested with two common forms of suspended ceiling: braced and perimeter-fixed. The experiments investigated the in-plane and out-of-plane performance of the low-damage drywall partitions, as well as displacement compatibility between these walls and the suspended ceilings. In the braced ceiling experiment, where no connection was made between ceiling grids and surrounding walls no damage in the grid system or partitions was observed. However, at high drift values panel dislodgement was observed on corners of the ceiling where the free ends of grids were not restrained against spreading. This could be prevented by framing the grid ends using a perimeter angle that is riveted only to the grid members while keeping sufficient clearance from the perimeter walls. In the next set of tests with the perimeter-fixed ceiling, no damage was observed in the ceiling system or the drywalls. Based on the results of the experiments it was concluded that the tested ceiling had enough flexibility to accommodate the relative displacement between two perpendicular walls up to the inter-storey drifts achieved. The experiments on perimeter-fixed ceilings were followed by numerical simulations of the performance of these ceilings in a finite element model developed in the structural analysis software, SAP2000. This model was relatively simple and easy to develop and was able to replicate the experimental results to a reasonable degree. Filtering was applied to the experimental output to exclude the effect of high frequency noise and tile-grid impact. The developed model generally simulated the acceleration responses well but underestimated the peak ceiling grid accelerations. This was possibly because the peak values in time histories were affected by impact occurring at very short periods. The model overestimated the axial forces in ceiling grids which was assumed to be caused by the initial assumptions made about the tributary area or constant acceleration associated with each grid line in the direction of excitation. Otherwise, the overall success of the numerical modelling in replicating the experimental results implies that numerical modelling using conventional structural analysis software could be used in engineering practice to analyse alternative ceiling geometries proposed for application to varying structural systems. This however, needs to be confirmed through similar analyses on other ceiling examples from existing instrumented buildings during real earthquakes. As the concluding part of this research the final phase addressed the issues raised following the review of existing ceiling standards and guidelines. The applicability of the research findings to current practice and their implications were discussed. Finally, an example was provided for the design of a suspended ceiling utilising the new knowledge acquired in this research.
Someone holds a bucket with 'Christchurch' printed on it for collecting donations. Context - People need assistance after the devastating earthquake of the 22nd February. On 22 February 2011 at 12:51 pm (NZDT), Christchurch experienced a major magnitude 6.3 earthquake, which resulted in severe damage and many casualties. A National State of Emergency has been declared. This followed on from an original magnitude 7.1 earthquake on 4 September 2010 which did far less damage and in which no-one died. Both colour and black and white versions of this cartoon are available Quantity: 2 digital cartoon(s).
Someone holds a mobile phone and sends a text 'CH CH WE R ALL IN THS 2 GTHR' (Christchurch we are all in this together). Context - On 22 February 2011 at 12:51 pm (NZDT), Christchurch experienced a major magnitude 6.3 earthquake, which resulted in severe damage and many casualties. A National State of Emergency has been declared. This followed on from an original magnitude 7.1 earthquake on 4 September 2010 which did far less damage and in which no-one died. Both colour and black and white versions of this cartoon are available Quantity: 2 digital cartoon(s).
People stand in front of a damaged house in New Brighton. The upper storey at the front of the house has collapsed onto the floor below. The photographer comments, "This house at 158 Marine Parade, New Brighton, Christchurch was owned by the man leaning on the fence. He lived next door and his daughter lived here. During the earthquake the 2nd storey stayed mainly whole, but the 1st collapsed. Luckily the daughter was in the top storey. She was rescued from the building by neighbours, by climbing out of the window and down a ladder. Another piece of luck is that most of the belongings were stored in boxes in the garage at the front. Though the garage also collapsed the boxes appear intact. The owner had tried to sell it previously without success".
A signpost pointing 'West' and 'East'. The sign pointing West is intact; that indicating East is broken and barely hanging on to the post. Refers to the condition of Christchurch City after the earthquakes of 2010 and 2011; the western wealthier suburbs were less damaged than the poorer Eastern suburbs. Also, progress on repair and rehabilitation of eastern housing had been slow. The redesign of the city centre seemed to be a western suburb priority which ignored the poverty and misery of living conditions on the east. Quantity: 1 digital cartoon(s).
A television announcer sits at his desk reading the news. He says 'The shake which lasted 75 minutes and caused widespread damage in living rooms all over the country measured 5.18 on the rugby scale and was centred on Port Elizabeth in South Africa'. Context: The All Blacks lost to the Springboks 5-18 in a tri-nations test match in South Africa only a few days before the World Cup kick-off. Fans have been warned not to panic. Colour and black and white versions available Quantity: 2 digital cartoon(s).
The 2010 Darfield earthquake is the largest earthquake on record to have occurred within 40 km of a major city and not cause any fatalities. In this paper the authors have reflected on their experiences in Christchurch following the earthquake with a view to what worked, what didn’t, and what lessons can be learned from this for the benefit of Australian earthquake preparedness. Owing to the fact that most of the observed building damage occurred in Unreinforced Masonry (URM) construction, this paper focuses in particular on the authors’ experience conducting rapid building damage assessment during the first 72 hours following the earthquake and more detailed examination of the performance of unreinforced masonry buildings with and without seismic retrofit interventions.
A photograph of the earthquake damage to the Christchurch Chinese Methodist Church on Papanui Road. The bricks in the gable have crumbled, exposing the wooden structure underneath and crushing a van below. Police tape has been placed around the building as a cordon.
A photograph of the earthquake damage to Ambrose Heal Furniture on the corner of Barbadoes Street and Edgeware Road. The brick walls have cracked and crumbled, exposing the inside of the building. Police tape has been placed around the property as a cordon.
Stage IV of the Christchurch liquefaction study updated the Stage II liquefaction hazard and ground damage maps with further data collected from other organisations, and included two additional maps indicating liquefaction sensitivity to groundwater levels. See Object Overview for background and usage information.
A photograph of an earthquake damaged house. USAR teams have spray-painted a message on the side of the house. The message reads, "Pile cleared by dogs, 4 March". To the left, a pile of rubble is lying next to the house.
Damage to the Fuze Restaurant and Cafe on the corner of Oxford Street and Norwich Quay. The facade around the top of the building has crumbled into the street below. Wire fencing has been used to create a cordon around the building.
Damage to the former Lyttelton Public Library on the corner of Oxford Street and Sumner Road. The facade along the top of the building has crumbled into the street. Tape and road cones have been used to create a cordon around the building.
A photograph of the earthquake damage to a building on Oxford Terrace. The wall to the right has collapsed, the concrete blocks spilling onto the footpath in front. USAR codes have been spray-painted on the ground at the entrance of the building.
A photograph of rubble from earthquake-damaged buildings along Colombo Street near the intersection with St Asaph Street. On the left-hand side of the street cars have been crushed by falling rubble. The road has been cordoned off with wire fencing.
A photograph of High Street looking towards the intersection of Manchester and Lichfield Streets. Rubble from earthquake-damaged buildings litters the street to the right. In the distance excavators are clearing rubble from Manchester and High Streets while emergency management personnel look on.
A photograph of the earthquake damage to the Country Theme store on St Asaph Street. Sections of the façade crumbled. The bricks have been cleared from the footpath below. Steel fencing and road cones have been placed around the building as a cordon.