Search

found 131 results

Research papers, Lincoln University

Six stands located on different land forms in mixed old-growth Nothofagus forests in the Matiri Valley (northwest of South Island, New Zealand) were sampled to examine the effects of two recent large earthquakes on tree establishment and tree-ring growth, and how these varied across land forms. 50 trees were cored in each stand to determine age structure and the cores were cross-dated to precisely date unusual periods of radial growth. The 1968 earthquake (M = 7.1, epicentre 35 km from the study area) had no discernible impact on the sampled stands. The impact of the 1929 earthquake (M = 7.7, epicentre 20 km from the study area) varied between stands, depending on whether or not they had been damaged by soil or rock movement. In all stands, the age structures showed a pulse of N. fusca establishment following the 1929 earthquake, with this species dominating establishment in large gaps created by landslides. Smaller gaps, created by branch or tree death, were closed by both N. fusca and N. menziesii. The long period of releases (1929-1945) indicates that direct earthquake damage was not the only cause of tree death, and that many trees died subsequently most likely of pathogen attack or a drought in the early 1930s. The impacts of the 1929 earthquake are compared to a storm in 1905 and a drought in 1974-1978 which also affected forests in the region. Our results confirm that earthquakes are an important factor driving forest dynamics in this tectonically active region, and that the diversity of earthquake impacts is a major source of heterogeneity in forest structure and regeneration.

Research papers, Lincoln University

Question: Does canopy tree regeneration response to different large disturbances vary with soil drainage? Location: Old-growth conifer (Dacrydium and Dacrycarpus), angiosperm (Nothofagus and Weinmannia) rain forest, Mount Harata, South Island, New Zealand. Methods: Trees were aged (1056 cores) to reconstruct stand history in 20 (0.12 - 0.2 ha) plots with different underlying drainage. Spatial analyses of an additional 805 tree ages collected from two (0.3 - 0.7 ha) plots were conducted to detect patchiness for five canopy tree species. Microsite preferences for trees and saplings were determined. Results: There were clear differences in species regeneration patterns on soils with different drainage. Conifer recruitment occurred infrequently in even-aged patches (> 1000 m²) and only on poorly drained soils. Periodic Nothofagus fusca and N. menziesii recruitment occurred more frequently in different sized canopy openings on all soils. Weinmannia recruitment was more continuous on all soils reflecting their greater relative shade-tolerance. Distinct periods of recruitment that occurred in the last 400 years matched known large disturbances in the region. These events affected species differently as soil drainage varied. Following earthquakes, both conifers and N. menziesii regenerated on poorly drained soils, while Nothofagus species and Weinmannia regenerated on well-drained soils. However, Dacrydium failed to regenerate after patchy storm damage in the wetter forest interior; instead faster-growing N. fusca captured elevated microsites caused by uprooting. Conclusions: Underlying drainage influenced species composition, while variation in the impacts of large disturbance regulated relative species abundances on different soils.

Research papers, Lincoln University

The Canterbury region of New Zealand was shaken by major earthquakes on the 4th September 2010 and 22nd February 2011. The quakes caused 185 fatalities and extensive land, infrastructure and building damage, particularly in the Eastern suburbs of Christchurch city. Almost 450 ha of residential and public land was designated as a ‘Red Zone’ unsuitable for residential redevelopment because land damage was so significant, engineering solutions were uncertain, and repairs would be protracted. Subsequent demolition of all housing and infrastructure in the area has left a blank canvas of land stretching along the Avon River corridor from the CBD to the sea. Initially the Government’s official – but enormously controversial – position was that this land would be cleared and lie fallow until engineering solutions could be found that enabled residential redevelopment. This paper presents an application of a choice experiment (CE) that identified and assessed Christchurch residents’ preferences for different land use options of this Red Zone. Results demonstrated strong public support for the development of a recreational reserve comprising a unique natural environment with native fauna and flora, healthy wetlands and rivers, and recreational opportunities that align with this vision. By highlighting the value of a range of alternatives, the CE provided a platform for public participation and expanded the conversational terrain upon which redevelopment policy took place. We conclude the method has value for land use decision-making beyond the disaster recovery context.

Research papers, Lincoln University

Following the 2010 and 2011 earthquakes Christchurch is undergoing extensive development on the periphery of the city. This has been driven in part by the large numbers of people who have lost their homes. Prior to the earthquakes, Christchurch was already experiencing placeless subdivisions and now these are being rolled out rapidly thanks to the efficiency of a formula that has been embraced by the Council, developers and the public alike. However, sprawling subdivisions have a number of issues including inefficient land use, limited housing types, high dependence on motor vehicles and low levels of resilience and no sense of place. Sense of place is of particular interest due to its glaring absence from new subdivisions and its growing importance in the literature. Research shows that sense of place has benefits to our feeling of belonging, well-being, and self-identity, particularly following a disaster. It improves the resilience and sustainability of our living environment and fosters a connection to the landscape thereby making us better placed to respond to future changes. Despite these benefits, current planning models such as new urbanism and transit-oriented design tend to give sense of place a low priority and as a result it can get lost. Given these issues, the focus of this research is “can landscape driven sense of place drive subdivision design without compromising on other urban planning criteria to produce subdivisions that address the issues of sprawl, as well as achieving the benefits associated with a strong sense of place that can improve our overall quality of life?” Answering this question required a thorough review of current urban planning and sense of place literature. This was used to critique existing subdivisions to gain a thorough understanding of the issues. The outcomes of this led to extensive design exploration which showed that, not only is it possible to design a subdivision with sense of place as the key driver but by doing this, the other urban planning criteria become easier to achieve.

Research papers, Lincoln University

The city of Christchurch, New Zealand, was until very recently a “Junior England”—a small city that still bore the strong imprint of nineteenth-century British colonization, alongside a growing interest in the underlying biophysical setting and the indigenous pre-European landscape. All of this has changed as the city has been subjected to a devastating series of earthquakes, beginning in September 2010, and still continuing, with over 12,000 aftershocks recorded. One of these aftershocks, on February 22, 2011, was very close to the city center and very shallow with disastrous consequences, including a death toll of 185. Many buildings collapsed, and many more need to be demolished for safety purposes, meaning that over 80 percent of the central city will have gone. Tied up with this is the city’s precious heritage—its buildings and parks, rivers, and trees. The threats to heritage throw debates over economics and emotion into sharp relief. A number of nostalgic positions emerge from the dust and rubble, and in one form is a reverse-amnesia—an insistence of the past in the present. Individuals can respond to nostalgia in very different ways, at one extreme become mired in it and unable to move on, and at the other, dismissive of nostalgia as a luxury in the face of more pressing crises. The range of positions on nostalgia represent the complexity of heritage debates, attachment, and identity—and the ways in which disasters amplify the ongoing discourse on approaches to conservation and the value of historic landscapes.

Research papers, University of Canterbury Library

The Mw 6.2 February 22nd 2011 Christchurch earthquake (and others in the 2010-2011 Canterbury sequence) provided a unique opportunity to study the devastating effects of earthquakes first-hand and learn from them for future engineering applications. All major events in the Canterbury earthquake sequence caused widespread liquefaction throughout Christchurch’s eastern suburbs, particularly extensive and severe during the February 22nd event. Along large stretches of the Avon River banks (and to a lesser extent along the Heathcote) significant lateral spreading occurred, affecting bridges and the infrastructure they support. The first stage of this research involved conducting detailed field reconnaissance to document liquefaction and lateral spreading-induced damage to several case study bridges along the Avon River. The case study bridges cover a range of ages and construction types but all are reinforced concrete structures which have relatively short, stiff decks. These factors combined led to a characteristic deformation mechanism involving deck-pinning and abutment back-rotation with consequent damage to the abutment piles and slumping of the approaches. The second stage of the research involved using pseudo-static analysis, a simplified seismic modelling tool, to analyse two of the bridges. An advantage of pseudo-static analysis over more complicated modelling methods is that it uses conventional geotechnical data in its inputs, such as SPT blowcount and CPT cone resistance and local friction. Pseudo-static analysis can also be applied without excessive computational power or specialised knowledge, yet it has been shown to capture the basic mechanisms of pile behaviour. Single pile and whole bridge models were constructed for each bridge, and both cyclic and lateral spreading phases of loading were investigated. Parametric studies were carried out which varied the values of key parameters to identify their influence on pile response, and computed displacements and damages were compared with observations made in the field. It was shown that pseudo-static analysis was able to capture the characteristic damage mechanisms observed in the field, however the treatment of key parameters affecting pile response is of primary importance. Recommendations were made concerning the treatment of these governing parameters controlling pile response. In this way the future application of pseudo-static analysis as a tool for analysing and designing bridge pile foundations in liquefying and laterally spreading soils is enhanced.

Research papers, University of Canterbury Library

Recently developed performance-based earthquake engineering framework, such as one provided by PEER (Deierlein et al. 2003), assist in the quantification in terms of performance such as casualty, monetary losses and downtime. This opens up the opportunity to identify cost-effective retrofit/rehabilitation strategies by comparing upfront costs associated with retrofit with the repair costs that can be expected over time. This loss assessment can be strengthened by learning from recent earthquakes, such as the 2010 Canterbury and 2016 Kaikoura earthquakes. In order to investigate which types of retrofit/rehabilitation strategies may be most cost-effective, a case study building was chosen for this research. The Pacific Tower, a 22-storey EBF apartment located within the Christchurch central business district (CBD), was damaged and repaired during the 2010 Canterbury earthquake series. As such, by taking hazard levels accordingly (i.e. to correspond to the Christchurch CBD), modelling and analysing the structure, and considering the vulnerability and repair costs of its different components, it is possible to predict the expected losses of the aforementioned building. Using this information, cost-effective retrofit/rehabilitation strategy can be determined. This research found that more often than not, it would be beneficial to improve the performance of valuable non-structural components, such as partitions. Although it is true that improving such elements will increase the initial costs, over time, the benefits gained from reduced losses should be expected to overcome the initial costs. Aftershocks do increase the predicted losses of a building even in lower intensities due to the fact that non-structural components can get damaged at such low intensities. By comparing losses computed with and without consideration of aftershocks for a range of historical earthquakes, it was found that the ratio between losses due to main shock with aftershocks to the losses due to the main shock only tended to increase with increasing main shock magnitude. This may be due to the fact that larger magnitude earthquakes tend to generate larger magnitude aftershocks and as those aftershocks happen within a region around the main shock, they are more likely to cause intense shaking and additional damage. In addition to this observation, it was observed that the most significant component of loss of the case study building was the non-structural partition walls.

Research papers, University of Canterbury Library

The Avon-Heathcote Estuary is of significant value to Christchurch due to its high productivity, biotic diversity, proximity to the city, and its cultural, recreational and aesthetic qualities. Nonetheless, it has been subjected to decades of degradation from sewage wastewater discharges and encroaching urban development. The result was a eutrophied estuary, high in nitrogen, affected by large blooms of nuisance macroalgae and covered by degraded sediments. In March 2010, treated wastewater was diverted from the estuary to a site 3 km offshore. This quickly reduced water nitrogen by 90% within the estuary and, within months, there was reduced production of macroalgae. However, a series of earthquakes beginning in September 2010 brought massive changes: tilting of the estuary, changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sediment and nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are an important buffer against eutrophication. Therefore, in tandem with the wastewater diversion, they could underpin much of the recovery of the estuary. Overall, the new sediments were less favourable for benthic microalgal growth and recolonisation, but were less contaminated than old sediments at highly eutrophic sites. Because the new sediments were less contaminated than the old sediments, they could help return the estuary to a noneutrophic state. However, if the new sediments, which are less favourable for microalgal growth, disperse over the old sediments at highly eutrophic sites, they could become contaminated and interfere with estuarine recovery. Therefore, recovery of microalgal communities and the estuary was expected to be generally long, but variable and site-specific, with the least eutrophic sites recovering quickly, and the most eutrophic sites taking years to return to a pre-earthquake and non-eutrophied state. changes in channels and water flow, and a huge influx of liquefied sediments that covered up to 65% of the estuary floor. Water nitrogen increased due to damage to sewage infrastructure and the diversion pipeline being turned off. Together, these drastically altered the estuarine ecosystem. My study involves three laboratory and five in situ experiments that investigate the base of the food chain and responses of benthic microalgae to earthquake-driven sedimen tand nutrient changes. It was predicted that the new sediments would be coarser and less contaminated with organic matter and nutrients than the old sediments, would have decreased microalgal biomass, and would prevent invertebrate grazing and bioturbation activities. It was believed that microalgal biomass would become similar across new and old sediments types as the unstable new sediments were resuspended and distributed over the old sediments. Contact cores of the sediment were taken at three sites, across a eutrophication gradient, monthly from September 2011 to March 2012. Extracted chlorophyll a pigments showed that microalgal biomass was generally lower on new liquefied sediments compared to old sediments, although there was considerable site to site variation, with the highly eutrophic sites being the most affected by the emergence of the new sediments. Grazer experiments showed that invertebrates had both positive and negative site-specific effects on microalgal biomass depending on their identity. At one site, new sediments facilitated grazing by Amphibola crenata, whereas at another site, new sediments did not alter the direct and indirect effects of invertebrates (Nicon aestuariensis, Macropthalmus hirtipes, and A. crenata) on microalgae. From nutrient addition experiments it was clear that benthic microalgae were able to use nutrients from within both old and new sediments equally. This implied that microalgae were reducing legacy nutrients in both sediments, and that they are

Audio, Radio New Zealand

Questions to Ministers 1. Hon ANNETTE KING to the Minister for Canterbury Earthquake Recovery: Does he agree with the Canterbury Employers' Chamber of Commerce chief executive Peter Townsend that the reconstruction of Canterbury following the earthquake requires someone "to co-ordinate and oversee" reconstruction? 2. COLIN KING to the Minister of Finance: What steps is the Government taking to ensure the Earthquake Commission can meet claims arising from the Canterbury earthquake? 3. Hon DAVID CUNLIFFE to the Minister of Finance: What was the earliest date that Treasury formed the conclusion that South Canterbury Finance could fail, and when and by whom was that first raised with him? 4. DAVID GARRETT to the Attorney-General: Does he agree that "tikanga" as it is described in the Marine and Coastal Area (Takutai Moana) Bill will differ in meaning from iwi to iwi and hapū to hapū? 5. Hon RUTH DYSON to the Minister of Health: Are doctors and nurses having more say in how the health system is run? 6. NICKY WAGNER to the Minister for the Environment: What reports has he received on responses to the Canterbury earthquake, particularly with respect to the region's flood and waste management systems? 7. TE URUROA FLAVELL to the Attorney-General: What is the burden of proof under the Marine and Coastal Area (Takutai Moana) Bill in relation to applications for customary interests, and what type of evidence would the Crown be required to produce to prove that a customary interest had been extinguished? 8. Hon DAVID PARKER to the Attorney-General: When he answered yesterday that "hopefully" the new foreshore and seabed bill "will settle the protracted controversy around the issues of the foreshore and seabed", was he aware that the Government's confidence and supply partner Hon Pita Sharples told TV3 that he was "not entirely happy" with the new bill? 9. JO GOODHEW to the Minister for Social Development and Employment: How have Government social services been supporting the people of Canterbury? 10. PHIL TWYFORD to the Minister of Local Government: Why did the Auckland Transition Agency award the $53.8 million contract for the Auckland Council's Enterprise Resource Planning computer system without a competitive tender? 11. Dr JACKIE BLUE to the Minister of Women's Affairs: Why is the Ministry of Women's Affairs celebrating Suffrage Day? 12. CATHERINE DELAHUNTY to the Minister of Women's Affairs: How will New Zealand's forthcoming report to the UN under the Convention on the Elimination of All Forms of Discrimination Against Women explain the Government's decision to axe the Pay and Employment Equity Unit?

Research papers, University of Canterbury Library

During 2010 and 2011, a series of major earthquakes caused widespread damage in the city of Christchurch, New Zealand. The magnitude 6.3 quake in February 2011 caused 185 fatalities. In the ensuing months, the government progressively zoned residential land in Christchurch on the basis of its suitability for future occupation (considering damage from these quakes and future earthquake risk). Over 6,000 homes were placed in the ‘red-zone’, meaning that property owners were forced to sell their land to the Crown. This study analysed patterns of residential mobility amongst thirty-one red-zone households from the suburb of Southshore, Christchurch. Drawing on interviews and surveys, the research traced their experience from the zoning announcement until they had moved to a new residence. The research distinguished between short (before the zoning announcement) and long term (post the red zone ‘deadline’) forms of household relocation. The majority of households in the study were highly resistant to short term movement. Amongst those which did relocate before the zoning decision, the desire to maintain a valued social connection with a person outside of the earthquake environment was often an important factor. Some households also moved out of perceived necessity (e.g. due to lack of power or water). In terms of long-term relocation, concepts of affordability and safety were much more highly valued by the sample when purchasing post-quake property. This resulted in a distinct patterning of post-quake housing location choices. Perceived control over the moving process, relationship with government organisations and insurance companies, and time spent in the red-zone before moving all heavily influenced participants’ disaster experience. Contrary to previous studies, households in this study recorded higher levels of subjective well-being after relocating. The study proposed a typology of movers in the Christchurch post-disaster environment. Four mobility behaviours, or types, are identified: the Committed Stayers (CSs), the Environment Re-Creators (ERCs), the Resigned Acceptors (RAs), and the Opportunistic Movers (OMs). The CSs were defined by their immobility rather than their relocation aspirations, whilst the ERCs attempted to recreate or retain aspects of Southshore through their mobility. The RAs expressed a form of apathy towards the post-quake environment, whereas, on the other hand, the OMs moved relative to pre-earthquake plans, or opportunities that arose from the earthquake itself. Possibilities for further research include examining household adaptability to new residential environments and tracking further mobility patterns in the years following relocation from the red- zone.

Research papers, University of Canterbury Library

Recent experiences from the Darfield and Canterbury, New Zealand earthquakes have shown that the soft soil condition of saturated liquefiable sand has a profound effect on seismic response of buildings, bridges and other lifeline infrastructure. For detailed evaluation of seismic response three dimensional integrated analysis comprising structure, foundation and soil is required; such an integrated analysis is referred to as Soil Foundation Structure Interaction (SFSI) in literatures. SFSI is a three-dimensional problem because of three primary reasons: first, foundation systems are three-dimensional in form and geometry; second, ground motions are three-dimensional, producing complex multiaxial stresses in soils, foundations and structure; and third, soils in particular are sensitive to complex stress because of heterogeneity of soils leading to a highly anisotropic constitutive behaviour. In literatures the majority of seismic response analyses are limited to plane strain configuration because of lack of adequate constitutive models both for soils and structures, and computational limitation. Such two-dimensional analyses do not represent a complete view of the problem for the three reasons noted above. In this context, the present research aims to develop a three-dimensional mathematical formulation of an existing plane-strain elasto-plastic constitutive model of sand developed by Cubrinovski and Ishihara (1998b). This model has been specially formulated to simulate liquefaction behaviour of sand under ground motion induced earthquake loading, and has been well-validated and widely implemented in verifcation of shake table and centrifuge tests, as well as conventional ground response analysis and evaluation of case histories. The approach adopted herein is based entirely on the mathematical theory of plasticity and utilises some unique features of the bounding surface plasticity formalised by Dafalias (1986). The principal constitutive parameters, equations, assumptions and empiricism of the existing plane-strain model are adopted in their exact form in the three-dimensional version. Therefore, the original two-dimensional model can be considered as a true subset of the three-dimensional form; the original model can be retrieved when the tensorial quantities of the three dimensional version are reduced to that of the plane-strain configuration. Anisotropic Drucker-Prager type failure surface has been adopted for the three-dimensional version to accommodate triaxial stress path. Accordingly, a new mixed hardening rule based on Mroz’s approach of homogeneous surfaces (Mroz, 1967) has been introduced for the virgin loading surface. The three-dimensional version is validated against experimental data for cyclic torsional and triaxial stress paths.

Research papers, University of Canterbury Library

The Canterbury earthquakes in 2010 and 2011 had a significant impact on landlords and tenants of commercial buildings in the city of Christchurch. The devastation wrought on the city was so severe that in an unprecedented response to this disaster a cordon was erected around the central business district for nearly two and half years while demolition, repairs and rebuilding took place. Despite the destruction, not all buildings were damaged. Many could have been occupied and used immediately if they had not been within the cordoned area. Others had only minor damage but repairs to them could not be commenced, let alone completed, owing to restrictions on access caused by the cordon. Tenants were faced with a major problem in that they could not access their buildings and it was likely to be a long time before they would be allowed access again. The other problem was uncertainty about the legal position as neither the standard form leases in use, nor any statute, provided for issues arising from an inaccessible building. The parties were therefore uncertain about their legal rights and obligations in this situation. Landlords and tenants were unsure whether tenants were required to pay rent for a building that could not be accessed or whether they could terminate their leases on the basis that the building was inaccessible. This thesis looks at whether the common law doctrine of frustration could apply to leases in these circumstances, where the lease had made no provision. It analyses the history of the doctrine and how it applies to a lease, the standard form leases in use at the time of the earthquakes and the unexpected and extraordinary nature of the earthquakes. It then reports on the findings of the qualitative empirical research undertaken to look at the experiences of landlords and tenants after the earthquakes. It is argued that the circumstances of landlords and tenants met the test for the doctrine of frustration. Therefore, the doctrine could have applied to leases to enable the parties to terminate them. It concludes with a suggestion for reform in the form of a new Act to govern the special relationship between commercial landlords and tenants, similar to legislation already in place covering other types of relationships like those in residential tenancies and employment. Such legislation could provide dispute resolution services to enable landlords and tenants to have access to justice to determine their legal rights at all times, and in particular, in times of crisis.

Research papers, Lincoln University

Liquefaction features and the geologic environment in which they formed were carefully studied at two sites near Lincoln in southwest Christchurch. We undertook geomorphic mapping, excavated trenches, and obtained hand cores in areas with surficial evidence for liquefaction and areas where no surficial evidence for liquefaction was present at two sites (Hardwick and Marchand). The liquefaction features identified include (1) sand blows (singular and aligned along linear fissures), (2) blisters or injections of subhorizontal dikes into the topsoil, (3) dikes related to the blows and blisters, and (4) a collapse structure. The spatial distribution of these surface liquefaction features correlates strongly with the ridges of scroll bars in meander settings. In addition, we discovered paleoliquefaction features, including several dikes and a sand blow, in excavations at the sites of modern liquefaction. The paleoliquefaction event at the Hardwick site is dated at A.D. 908-1336, and the one at the Marchand site is dated at A.D. 1017-1840 (95% confidence intervals of probability density functions obtained by Bayesian analysis). If both events are the same, given proximity of the sites, the time of the event is A.D. 1019-1337. If they are not, the one at the Marchand site could have been much younger. Taking into account a preliminary liquefaction-triggering threshold of equivalent peak ground acceleration for an Mw 7.5 event (PGA7:5) of 0:07g, existing magnitude-bounded relations for paleoliquefaction, and the timing of the paleoearthquakes and the potential PGA7:5 estimated for regional faults, we propose that the Porters Pass fault, Alpine fault, or the subduction zone faults are the most likely sources that could have triggered liquefaction at the study sites. There are other nearby regional faults that may have been the source, but there is no paleoseismic data with which to make the temporal link.

Research papers, University of Canterbury Library

In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.

Research papers, University of Canterbury Library

In the last century, seismic design has undergone significant advancements. Starting from the initial concept of designing structures to perform elastically during an earthquake, the modern seismic design philosophy allows structures to respond to ground excitations in an inelastic manner, thereby allowing damage in earthquakes that are significantly less intense than the largest possible ground motion at the site of the structure. Current performance-based multi-objective seismic design methods aim to ensure life-safety in large and rare earthquakes, and to limit structural damage in frequent and moderate earthquakes. As a result, not many recently built buildings have collapsed and very few people have been killed in 21st century buildings even in large earthquakes. Nevertheless, the financial losses to the community arising from damage and downtime in these earthquakes have been unacceptably high (for example; reported to be in excess of 40 billion dollars in the recent Canterbury earthquakes). In the aftermath of the huge financial losses incurred in recent earthquakes, public has unabashedly shown their dissatisfaction over the seismic performance of the built infrastructure. As the current capacity design based seismic design approach relies on inelastic response (i.e. ductility) in pre-identified plastic hinges, it encourages structures to damage (and inadvertently to incur loss in the form of repair and downtime). It has now been widely accepted that while designing ductile structural systems according to the modern seismic design concept can largely ensure life-safety during earthquakes, this also causes buildings to undergo substantial damage (and significant financial loss) in moderate earthquakes. In a quest to match the seismic design objectives with public expectations, researchers are exploring how financial loss can be brought into the decision making process of seismic design. This has facilitated conceptual development of loss optimisation seismic design (LOSD), which involves estimating likely financial losses in design level earthquakes and comparing against acceptable levels of loss to make design decisions (Dhakal 2010a). Adoption of loss based approach in seismic design standards will be a big paradigm shift in earthquake engineering, but it is still a long term dream as the quantification of the interrelationships between earthquake intensity, engineering demand parameters, damage measures, and different forms of losses for different types of buildings (and more importantly the simplification of the interrelationship into design friendly forms) will require a long time. Dissecting the cost of modern buildings suggests that the structural components constitute only a minor portion of the total building cost (Taghavi and Miranda 2003). Moreover, recent research on seismic loss assessment has shown that the damage to non-structural elements and building contents contribute dominantly to the total building loss (Bradley et. al. 2009). In an earthquake, buildings can incur losses of three different forms (damage, downtime, and death/injury commonly referred as 3Ds); but all three forms of seismic loss can be expressed in terms of dollars. It is also obvious that the latter two loss forms (i.e. downtime and death/injury) are related to the extent of damage; which, in a building, will not just be constrained to the load bearing (i.e. structural) elements. As observed in recent earthquakes, even the secondary building components (such as ceilings, partitions, facades, windows parapets, chimneys, canopies) and contents can undergo substantial damage, which can lead to all three forms of loss (Dhakal 2010b). Hence, if financial losses are to be minimised during earthquakes, not only the structural systems, but also the non-structural elements (such as partitions, ceilings, glazing, windows etc.) should be designed for earthquake resistance, and valuable contents should be protected against damage during earthquakes. Several innovative building technologies have been (and are being) developed to reduce building damage during earthquakes (Buchanan et. al. 2011). Most of these developments are aimed at reducing damage to the buildings’ structural systems without due attention to their effects on non-structural systems and building contents. For example, the PRESSS system or Damage Avoidance Design concept aims to enable a building’s structural system to meet the required displacement demand by rocking without the structural elements having to deform inelastically; thereby avoiding damage to these elements. However, as this concept does not necessarily reduce the interstory drift or floor acceleration demands, the damage to non-structural elements and contents can still be high. Similarly, the concept of externally bracing/damping building frames reduces the drift demand (and consequently reduces the structural damage and drift sensitive non-structural damage). Nevertheless, the acceleration sensitive non-structural elements and contents will still be very vulnerable to damage as the floor accelerations are not reduced (arguably increased). Therefore, these concepts may not be able to substantially reduce the total financial losses in all types of buildings. Among the emerging building technologies, base isolation looks very promising as it seems to reduce both inter-storey drifts and floor accelerations, thereby reducing the damage to the structural/non-structural components of a building and its contents. Undoubtedly, a base isolated building will incur substantially reduced loss of all three forms (dollars, downtime, death/injury), even during severe earthquakes. However, base isolating a building or applying any other beneficial technology may incur additional initial costs. In order to provide incentives for builders/owners to adopt these loss-minimising technologies, real-estate and insurance industries will have to acknowledge the reduced risk posed by (and enhanced resilience of) such buildings in setting their rental/sale prices and insurance premiums.

Research papers, University of Canterbury Library

There is a relationship between inelastic deformation and energy dissipation in structures that are subjected to earthquake ground motions. Thus, if seismic energy dissipation can be achieved by means of a separate non-load bearing supplementary damping system, the load bearing structure can remain elastic with continuing serviceability following the design level earthquake. This research was carried out to investigate the advantages of using added damping in structures. The control system consists of passive friction dampers called ring spring dampers installed in the ground floor of the structure using a tendon to transmit the forces to the other parts of the structure. The ring springs dampers are friction devices consisting of inner and outer ring elements assembled to form a spring stack. External load applied to the spring produces sliding action across mating ring interfaces. The damping forces generated by the dampers and transferred in the supplemental system to the structure by the tendon and horizontal links oppose the internal loads. A four storey-two bay steel frame structure was used in the study. Experimental and analytical studies to investigate the effectiveness of a supplemental control system are presented. The model was subjected to a series of earthquake simulations on the shaking table in the Structural Laboratory of the Civil Engineering Department, at the University of Canterbury. The earthquake simulation tests have been performed on the structure both with and without the supplemental control system. The earthquake simulations were a series of gradually increasing intensity replications of two commonly used earthquake records. This thesis includes detailed description of the structural model, the supplemental control system, the ring springs dampers and the data obtained during the testing. Analyses were then carried out on a twelve storey framed structure to investigate the possible tendon arrangements and the size and type of dampers required to control the response of a real building. Guidelines for determining the appropriateness of including a supplemental damping system have been investigated. The main features of the supplemental control system adopted in this research are: • It is a passive control system with extreme reliability and having no dependence on external power sources to effect the control action. These power sources may not be available during a major earthquake. • Ring springs are steel friction devices capable of absorbing large amounts of input energy. No liquid leakage can occur and minimal maintenance is required for the ring spring dampers. • With a damper-tendon system, the distribution of the dampers throughout the structure is not so critical. Only one or two dampers are used to produce the damping forces needed, and forces are then transferred to the rest of the building by the tendon system. • It is a relatively inexpensive control system with a long useful life.

Research papers, University of Canterbury Library

Organisations play a vital role in assisting communities to recover from disasters. They are the key providers of goods and services needed in both response and recovery efforts. They provide the employment which both anchors people to place and supports the taxation base to allow for necessary recovery spending. Finally, organisations are an integral part of much day to day functioning contributing immensely to people’s sense of ‘normality’ and psychological wellbeing. Yet, despite their overall importance in the recovery process, there are significant gaps in our existing knowledge with regard to how organisations respond and recover following disaster. This research fills one part of this gap by examining collaboration as an adaptive strategy enacted by organisations in the Canterbury region of New Zealand, which was heavily impacted by a series of major earthquakes, occurring in 2010 and 2011. Collaboration has been extensively investigated in a variety of settings and from numerous disciplinary perspectives. However, there are few studies that investigate the role of collaborative approaches to support post-disaster business recovery. This study investigates the type of collaborations that have occurred and how they evolved as organisations reacted to the resource and environmental change caused by the disaster. Using data collected through semi-structured interviews, survey and document analysis, a rich and detailed picture of the recovery journey is created for 26 Canterbury organisations including 14 collaborators, six non-traders, five continued traders and one new business. Collaborations included two or more individual businesses collaborating along with two multi-party, place based projects. Comparative analysis of the organisations’ experiences enabled the assessment of decisions, processes and outcomes of collaboration, as well as insight into the overall process of business recovery. This research adopted a primarily inductive, qualitative approach, drawing from both grounded theory and case study methodologies in order to generate theory from this rich and contextually situated data. Important findings include the importance of creating an enabling context which allows organisations to lead their own recovery, the creation of a framework for effective post-disaster collaboration and the importance of considering both economic and other outcomes. Collaboration is found to be an effective strategy enabling resumption of trade at a time when there seemed few other options available. While solving this need, many collaborators have discovered significant and unexpected benefits not just in terms of long term strategy but also with regard to wellbeing. Economic outcomes were less clear-cut. However, with approximately 70% of the Central Business District demolished and rebuilding only gaining momentum in late 2014, many organisations are still in a transition stage moving towards a new ‘normal’.

Research papers, University of Canterbury Library

Rising disaster losses, growth in global migration, migrant labour trends, and increasingly diverse populations have serious implications for disaster resilience around the world. These issues are of particular concern in New Zealand, which is highly exposed to disaster risk and has the highest proportion of migrant workers to national population in the OECD. Since there has been no research conducted into this issue in New Zealand to date, greater understanding of the social capital used by migrant workers in specific New Zealand contexts is needed to inform more targeted and inclusive disaster risk management approaches. A New Zealand case study is used to investigate the extent and types of social capital and levels of disaster risk awareness reported by members of three Filipino migrant workers organisations catering to dairy farm, construction and aged care workers in different urban and rural Canterbury districts. Findings from (3) semi-structured interviews and (3) focus groups include consistently high reliance on bonding capital and low levels of bridging capital across all three organisations and industry sectors, and in both urban and rural contexts. The transitory, precarious residential status conveyed by temporary work visas, and the difficulty of building bridging capital with host communities has contributed to this heavy reliance on bonding capital. Social media was essential to connect workers with family and friends in other countries, while Filipino migrant workers organisations provided members with valuable access to industry and district-specific networks of other Filipino migrant workers. Linking capital varied between the three organisations, with members of the organisation set up to advocate for dairy farm workers reporting the highest levels of linking capital. Factors influencing the capacity of workers organisations to develop linking capital appeared to include motivation (establishment objectives), length of time since establishment, support from government and industry groups, urban-rural context, income levels and gender. Although aware of publicity around earthquake and tsunami risk in the Canterbury region, participants were less aware of flood risk, and expressed fatalistic attitudes to disaster risk. Workers organisations offer a valuable potential interface between CDEM Group activities and migrant worker communities, since organisation leaders were interested in accessing government support to participate (with and on behalf of members) in disaster risk planning at district and regional level. With the potential to increase disaster resilience among these vulnerable, hard to reach communities, such participation could also help to build capacity across workers organisations (within Canterbury and across the country) to develop linking capital at national, as well as regional level. However, these links will also depend on greater government and industry commitment to providing more targeted and appropriate support for migrant workers, including consideration of the cultural qualifications of staff tasked with liaising with this community.

Research papers, University of Canterbury Library

This report summarizes the development of a region-wide surficial soil shear wave velocity (Vs ) model based on the unique combination of a large high-spatial-density database of cone penetration test (CPT) logs in the greater Christchurch urban area (> 15, 000 logs as of 1 February 2014) and the Christchurch-specific empirical correlation between soil Vs and CPT data developed by McGann et al. [1, 2]. This model has applications for site characterization efforts via maps of time-averaged Vs over specific depths (e.g. Vs30, Vs10), and for numerical modeling efforts via the identification of typical Vs profiles for different regions and soil behaviour types within Christchurch. In addition, the Vs model can be used to constrain the near-surface velocities for the 3D seismic velocity model of the Canterbury basin [3] currently being developed for the purpose of broadband ground motion simulation. The general development of these region-wide near-surface Vs models includes the following general phases, with each discussed in separate chapters of this report. • An evaluation of the available CPT dataset for suitability, and the definition of other datasets and assumptions necessary to characterize the surficial sediments of the region to 30 m depth. • The development of time-averaged shear wave velocity (Vsz) surfaces for the Christchurch area from the adopted CPT dataset (and supplementary data/assumptions) using spatial interpolation. The Vsz surfaces are used to explore the characteristics of the near-surface soils in the regions and are shown to correspond well with known features of the local geology, the historical ecosystems of the area, and observations made following the 2010- 2011 Canterbury earthquakes. • A detailed analysis of the Vs profiles in eight subregions of Christchurch is performed to assess the variablity in the soil profiles for regions with similar Vsz values and to assess Vsz as a predictive metric for local site response. It is shown that the distrubution of soil shear wave velocity in the Christchurch regions is highly variable both spatially (horizontally) and with depth (vertically) due to the varied geological histories for different parts of the area, and the highly stratified nature of the nearsurface deposits. This variability is not considered to be greatly significant in terms of current simplified site classification systems; based on computed Vs30 values, all considered regions can be categorized as NEHRP sites class D (180 < Vs < 360 m/s) or E (Vs < 180 m/s), however, detailed analysis of the shear wave velocity profiles in different subregions of Christchurch show that the expected surficial site response can vary quite a bit across the region despite the relative similarity in Vs30

Research papers, Victoria University of Wellington

New Zealand has experienced several strong earthquakes in its history. While an earthquake cannot be prevented from occurring, planning can reduce its consequences when it does occur. This dissertation research examines various aspects of disaster risk management policy in Aotearoa New Zealand. Chapter 2 develops a method to rank and prioritise high-rise buildings for seismic retrofitting in Wellington, the earthquake-prone capital city of New Zealand. These buildings pose risks to Wellington’s long-term seismic resilience that are of clear concern to current and future policymakers. The prioritization strategy we propose, based on multi-criteria decision analysis (MCDA) methods, considers a variety of data on each building, including not only its structural characteristics, but also its location, its economic value to the city, and its social importance to the community around it. The study demonstrates how different measures, within four general criteria – life safety, geo-spatial location of the building, its economic role, and its socio-cultural role – can be operationalized into a viable framework for determining retrofitting/demolition policy priorities. Chapter 3 and chapter 4 analyse the Residential Red Zone (RRR) program that was implemented in Christchurch after the 2011 earthquake. In the program, approximately 8,000 homeowners were told that their homes were no longer permittable, and they were bought by the government (through the Canterbury Earthquake Recovery Authority). Chapter 3 examines the subjective wellbeing of the RRR residents (around 16000 people) after they were forced to move. We consider three indicators of subjective wellbeing: quality of life, stress, and emotional wellbeing. We found that demographic factors, health conditions, and the type of government compensation the residents accepted, were all significant determinants of the wellbeing of the Red Zone residents. More social relations, better financial circumstances, and the perception of better government communication were also all associated positively with a higher quality of life, less stress, and higher emotional wellbeing. Chapter 4 concentrates on the impact of this managed retreat program on RRR residents’ income. We use individual-level comprehensive, administrative, panel data from Canterbury, and difference in difference evaluation method to explore the effects of displacement on Red Zone residential residents. We found that compared to non-relocated neighbours, the displaced people experience a significant initial decrease in their wages and salaries, and their total income. The impacts vary with time spent in the Red Zone and when they moved away. Wages and salaries of those who were red-zoned and moved in 2011 were reduced by 8%, and 5.4% for those who moved in 2012. Females faced greater decreases in wages and salaries, and total income, than males. There were no discernible impacts of the relocation on people’s self-employment income.

Research papers, University of Canterbury Library

A buckling-restrained braced frame (BRBF) is a structural bracing system that provides lateral strength and stiffness to buildings and bridges. They were first developed in Japan in the 1970s (Watanabe et al. 1973, Kimura et al. 1976) and gained rapid acceptance in the United States after the Northridge earthquake in 1994 (Bruneau et al. 2011). However, it was not until the Canterbury earthquakes of 2010/2011, that the New Zealand construction market saw a significant uptake in the use of buckling-restrained braces (BRBs) in commercial buildings (MacRae et al. 2015). In New Zealand there is not yet any documented guidance or specific instructions in regulatory standards for the design of BRBFs. This makes it difficult for engineers to anticipate all the possible stability and strength issues within a BRBF system and actively mitigate them in each design. To help ensure BRBF designs perform as intended, a peer review with physical testing are needed to gain building compliance in New Zealand. Physical testing should check the manufacturing and design of each BRB (prequalification testing), and the global strength and stability of each BRB its frame (subassemblage testing). However, the financial pressures inherent in commercial projects has led to prequalification testing (BRB only testing) being favoured without adequate design specific subassemblage testing. This means peer reviewers have to rely on BRB suppliers for assurances. This low regulation environment allows for a variety of BRBF designs to be constructed without being tested or well understood. The concern is that there may be designs that pose risk and that issues are being overlooked in design and review. To improve the safety and design of BRBFs in New Zealand, this dissertation studies the behaviour of BRBs and how they interact with other frame components. Presented is the experimental test process and results of five commercially available BRB designs (Chapter 2). It discusses the manufacturing process, testing conditions and limitations of observable information. It also emphasises that even though subassemblage testing is impractical, uniaxial testing of the BRB only is not enough, as this does not check global strength or stability. As an alternative to physical testing, this research uses computer simulation to model BRB behaviour. To overcome the traditional challenges of detailed BRB modelling, a strategy to simulate the performance of generic BRB designs was developed (Chapter 3). The development of nonlinear material and contact models are important aspects of this strategy. The Chaboche method is employed using a minimum of six backstress curves to characterize the combined isotropic and kinematic hardening exhibited by the steel core. A simplified approach, adequate for modelling the contact interaction between the restrainer and the core was found. Models also capture important frictional dissipation as well as lateral motion and bending associated with high order constrained buckling of the core. The experimental data from Chapter 2 was used to validate this strategy. As BRBs resist high compressive loading, global stability of the BRB and gusseted connection zone need to be considered. A separate study was conducted that investigated the yielding and buckling strength of gusset plates (Chapter 4). The stress distribution through a gusset plate is complex and difficult to predict because the cross-sectional area of gusset plate is not uniform, and each gusset plate design is unique in shape and size. This has motivated design methods that approximate yielding of gusset plates. Finite element modelling was used to study the development of yielding, buckling and plastic collapse behaviour of a brace end bolted to a series of corner gusset plates. In total 184 variations of gusset plate geometries were modelled in Abaqus®. The FEA modelling applied monotonic uniaxial load with an imperfection. Upon comparing results to current gusset plate design methods, it was found that the Whitmore width method for calculating the yield load of a gusset is generally un-conservative. To improve accuracy and safety in the design of gusset plates, modifications to current design methods for calculating the yield area and compressive strength for gusset plates is proposed. Bolted connections are a popular and common connection type used in BRBF design. Global out-of-plane stability tends to govern the design for this connection type with numerous studies highlighting the risk of instability initiated by inelasticity in the gussets, neck of the BRB end and/or restrainer ends. Subassemblage testing is the traditional method for evaluating global stability. However, physical testing of every BRBF variation is cost prohibitive. As such, Japan has developed an analytical approach to evaluate out-of-plane stability of BRBFs and incorporated this in their design codes. This analytical approach evaluates the different BRB components under possible collapse mechanisms by focusing on moment transfer between the restrainer and end of the BRB. The approach have led to strict criteria for BRBF design in Japan. Structural building design codes in New Zealand, Europe and the United States do not yet provide analytical methods to assess BRB and connection stability, with prototype/subassemblage testing still required as the primary means of accreditation. Therefore it is of interest to investigate the capability of this method to evaluate stability of BRBs designs and gusset plate designs used in New Zealand (including unstiffened gusset connection zones). Chapter 5 demonstrates the capability of FEA to study to the performance of a subassemblage test under cyclic loading – resembling that of a diagonal ground storey BRBF with bolted connections. A series of detailed models were developed using the strategy presented in Chapter 3. The geometric features of BRB 6.5a (Chapter 2) were used as a basis for the BRBs modelled. To capture the different failure mechanisms identified in Takeuchi et al. (2017), models varied the length that the cruciform (non-yielding) section inserts into the restrainer. Results indicate that gusset plates designed according to New Zealand’s Steel Structures Standard (NZS 3404) limit BRBF performance. Increasing the thickness of the gusset plates according to modifications discussed in Chapter 4, improved the overall performance for all variants (except when Lin/ Bcruc = 0.5). The effect of bi-directional loading was not found to notably affect out-of-plane stability. Results were compared against predictions made by the analytical method used in Japan (Takeuchi method). This method was found to be generally conservative is predicting out-of-plane stability of each BRBF model. Recommendations to improve the accuracy of Takeuchi’s method are also provided. The outcomes from this thesis should be helpful for BRB manufacturers, researchers, and in the development of further design guidance of BRBFs.

Research papers, University of Canterbury Library

Current research in geotechnical engineering at the University of Canterbury includes a number of laboratory testing programmes focussed on understanding the behaviour of natural soil deposits in Christchurch during the 2010-2011 Canterbury Earthquake Sequence. Many soils found in Christchurch are sands or silty sands with little to no plasticity, making them very difficult to sample using established methods. The gel-push sampling methodology, developed by Kiso-Jiban Consultants in Japan, was developed to address some of the deficiencies of existing sampling techniques and has been deployed on two projects in Christchurch. Gel push sampling is carried out with a range of samplers which are modified versions of existing technology, and the University of Canterbury has acquired three versions of the tools (GP-S, GP-Tr, GP-D). Soil samples are extracted from the bottom of a freshly drilled borehole and are captured within a liner barrel, close to 1m in length. A lubricating polymer gel coats the outside of the soil sample as it enters the liner barrel. The frictional rubbing which normally occurs on the sides of the soil samples using existing techniques is eliminated by the presence of the polymer gel. The operation of the gel-push samplers is significantly more complicated than conventional push-tube samplers, and in the initial trials a number of operational difficulties were encountered, requiring changes to the sampling procedures. Despite these issues, a number of high quality soil samples were obtained on both projects using the GP-S sampler to capture silty soil. Attempts were made to obtain clean sands using a different gel-push sampler (GP-TR) in the Red Zone. The laboratory testing of these sands indicated that they were being significantly disturbed during the sampling and/or transportation procedures. While it remains too early to draw definitive conclusions regarding the performance of the gel-push samplers, the methodology has provided some promising results. Further trialling of the tools are required to refine operating procedures understand the full range of soil conditions which can be successfully sampled using the tools. In parallel with the gel-push trials, a Dames and Moore fixed-piston sampler has been used by our research partners from Berkeley to obtain soil samples at a number of sites within Christchurch. This sampler features relatively short (50cm), thin-walled liner barrels which is advanced into the ground under the action of hydraulic pressure. By reducing the overall length of the soil being captured, the disturbance to the soil as it enters the liner barrel is significantly reduced. The Dames and Moore sampler is significantly easier to operate than the gel-push sampler, and past experience has shown it to be successful in soft, plastic materials (i.e. clays and silty clays). The cyclic resistance of one silty clay obtained using both the gel-push and Dames & Moore samplers has been found to be very similar, and ongoing research aims to establish whether similar results are obtained for different soil types, including silty materials and clean sands.

Research papers, Victoria University of Wellington

In the aftermath of the 2011 earthquake, a state of polycentric urbanity was thrust upon New Zealand’s second largest city. As the city-centre lay in disrepair, smaller centres started to materialise elsewhere, out of necessity. Transforming former urban peripheries and within existing suburbs into a collective, dispersed alternative to the city centre, these sub-centres prompted a range of morphological, socio-cultural and political transformations, and begged multiple questions: how to imbue these new sub-centres with gravity? How to render them a genuine alternative to the CBD? How do they operate within the wider city? How to cope with the physical and cultural transformations of this shifting urbanscape and prevent them occurring ad lib? Indeed, the success and functioning of the larger urban structure hinges upon a critical, informed response to these sub-centre urban contexts. Yet, with an unrelenting focus on the CBD rebuild - effectively a polycentric denial - little such attention has been granted.  Taking this urban condition as its premise and its provocation, this thesis investigates architecture’s role in the emergent sub-centre. It asks: what can architecture do in these urban contexts; how can architecture act upon the emergent sub-centre in a critical, catalytic fashion? Identifying this volatile condition as both an opportunity for architectural experimentation and a need for critical architectural engagement, this thesis seeks to explore the sub-centre (as an idea and actual urban context) as architecture’s project: its raison d’etre, impetus and aspiration.  These inquiries are tested through design-led research: an initial design question provoking further, broader discursive research (and indeed, seeking broader implications). The first section is a site-specific, design for Sumner, Christchurch. Titled ‘An Agora Anew’; this project - both in conception and outcome - is a speculative response to a specific sub-centre condition. The second section ‘The Sub-centre as Architecture’s Project’ explores the ideas provoked by the design project within a discursive framework. Firstly it identifies the sub-centre as a context in desperate need of architectural attention (why architecture?); secondly, it negotiates a possible agenda for architecture in this context through terms of engagement that are formal, critical and opportunistic (how architecture?): enabling it to take a position on and in the sub-centre. Lastly, a critical exegesis positions the design in regards to the broader discursive debate: critiquing it an architectural project predicated upon the idea of the sub-centre.  The implications of this design-led thesis are twofold: firstly, for architecture’s role in the sub-centre (especially to Christchurch); secondly for the possibilities of architecture’s productive engagement with the city (largely through architectural form), more generally. In a century where radical, new urban contexts (of which the sub-centre is just one) are commonplace, this type of thinking – what can architecture do in the city? - is imperative.

Research papers, Lincoln University

The major earthquakes of 2010 and 2011 brought to an abrupt end a process of adaptive reuse, revitalisation and gentrification that was underway in the early 20th century laneways and buildings located in the south eastern corner of the Christchurch Central Business District. Up until then, this location was seen as an exemplar of how mixed use could contribute to making the central city an attractive and viable alternative to the suburban living experience predominant in New Zealand. This thesis is the result of a comprehensive case study of this “Lichfield Lanes” area, which involved in depth interviews with business owners, observation of public meetings and examination of documents and the revitalisation research literature. Findings were that many of the factors seen to make this location successful pre-earthquakes mirror the results of similar research in other cities. These factors include: the importance of building upon historic architecture and the eclectic spaces this creates; a wide variety of uses generating street life; affordable rental levels; plus the dangers of uniformity of use brought about by focussing on business types that pay the most rent. Also critical is co-operation between businesses to create and effectively market and manage an identifiable precinct that has a coherent style and ambience that differentiates the location from competing suburban malls. In relation to the latter, a significant finding of this project was that the hospitality and retail businesses key to the success of Lichfield Lanes were not typical and could be described as quirky, bohemian, chaotic, relatively low rent, owner operated and appealing to the economically important “Creative Class” identified by Richard Florida (2002) and others. In turn, success for many of these businesses can be characterised as including psychological and social returns rather than simply conventional economic benefits. This has important implications for inner city revitalisation, as it contrasts with the traditional focus of local authorities and property developers on physical aspects and tenant profitability as measures of success. This leads on to an important conclusion from this research, which is that an almost completely inverted strategy from that applied to suburban mall development, may be most appropriate for successful inner city revitalisation. It also highlights a disconnection between the focus and processes of regulatory authorities and the outcomes and processes most acceptable to the people likely to frequent the central city. Developers are often caught in the middle of this conflicted situation. Another finding was early commitment by businesses to rebuild the case study area in the same style, but over time this waned as delay, demolition, insurance problems, political and planning uncertainty plus other issues made participation by the original owners and tenants impossible or uneconomic. In conclusion, the focus of inner city revitalisation is too often on buildings rather than the people that use them and what they now desire from the central city.

Research papers, University of Canterbury Library

In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.

Research papers, University of Canterbury Library

A series of undrained cyclic direct simple shear (DSS) tests on specimens of sandy silty soils are used to evaluate the effects of fines content, fabric and layered structure on the liquefaction response of sandy soils containing non-plastic fines. Test soils originate from shallow deposits in Christchurch, New Zealand, where severe and damaging manifestations of liquefaction occurred during the 2010-2011 Canterbury earthquakes. A procedure for reconstituting specimens by water sedimentation is employed. This specimen preparation technique involves first pluviation of soil through a water column, and then application of gentle vibrations to the mould (tapping) to prepare specimens with different initial densities. This procedure is applied to prepare uniform specimens, and layered specimens with a silt layer atop a sand layer. Cyclic DSS tests are performed on water-sedimented specimens of two sands, a silt, and sand-silt mixtures with different fines contents. Through this testing program, effects of density, time of vibration during preparation, fines content, and layered structure on cyclic behaviour and liquefaction resistance are investigated. Additional information necessary to characterise soil behaviour is provided by particle size distribution analyses, index void ratio testing, and Scanning Electronic Microscope imaging. The results of cyclic DSS tests show that, for all tested soils, specimens vibrated for longer period of time have lower void ratios, higher relative density, and greater liquefaction resistance. One of the tested sands undergoes significant increase in relative density and liquefaction resistance following prolonged vibration. The other sand exhibits lower increase in relative density and in liquefaction resistance when vibrated for the same period of time. Liquefaction resistance of sand-silt mixtures prepared using this latter sand shows a correlation with relative density irrespective of fines content. In general, however, magnitudes of changes in liquefaction resistance for given variations in vibration time, relative density, or void ratio vary depending on soils under consideration. Characterization based on maximum and minimum void ratios indicates that tested soils develop different structures as fines are added to their respective host sands. These structures influence initial specimen density, strains during consolidation, cyclic liquefaction resistance, and undrained cyclic response of each soil. The different structures are the outcome of differences in particle size distributions, average particle sizes, and particle shapes of the two host sands and of the different relationships between these properties and those of the silt. Fines content alone does not provide an effective characterization of the effects of these factors. Monotonic DSS tests are also performed on specimens prepared by water sedimentation, and on specimens prepared by moist tamping, to identify the critical state lines of tested soils. These critical state lines provide the basis for an alternative interpretation of cyclic DSS tests results within the critical state framework. It is shown that test results imply general consistency between observed cyclic and monotonic DSS soil response. The effects of specimen layering are scrutinised by comparing DSS test results for uniform and layered specimens of the same soils. In this case, only a limited number of tests is performed, and the range of densities considered for the layered specimens is also limited. Caution is therefore required in interpretation of their results. The liquefaction resistance of layered specimens appears to be influenced by the bottom sand layer, irrespective of the global fines content of the specimen. The presence of a layered structure does not result in significant differences in terms of liquefaction response with respect to uniform sand specimens. Cyclic triaxial data for Christchurch sandy silty soils available from previous studies are used to comparatively examine the behaviour observed in the tests of this study. The cyclic DSS liquefaction resistance of water-sedimented specimens is consistent with cyclic triaxial tests on undisturbed specimens performed by other investigators. The two data sets result in similar liquefaction triggering relationships for these soils. However, stress-strain response characteristics for the two types of specimens are different, and undisturbed triaxial specimen exhibit a slower rate of increase in shear strains compared to water-sedimented DSS specimens. This could be due to the greater influence of fabric of the undisturbed specimens.

Research papers, University of Canterbury Library

Previous earthquakes demonstrated destructive effects of soil-structure interaction on structural response. For example, in the 1970 Gediz earthquake in Turkey, part of a factory was demolished in a town 135 km from the epicentre, while no other buildings in the town were damaged. Subsequent investigations revealed that the fundamental period of vibration of the factory was approximately equal to that of the underlying soil. This alignment provided a resonance effect and led to collapse of the structure. Another dramatic example took place in Adapazari, during the 1999 Kocaeli earthquake where several foundations failed due to either bearing capacity exceedance or foundation uplifting, consequently, damaging the structure. Finally, the Christchurch 2012 earthquakes have shown that significant nonlinear action in the soil and soil-foundation interface can be expected due to high levels of seismic excitation and spectral acceleration. This nonlinearity, in turn, significantly influenced the response of the structure interacting with the soil-foundation underneath. Extensive research over more than 35 years has focused on the subject of seismic soil-structure interaction. However, since the response of soil-structure systems to seismic forces is extremely complex, burdened by uncertainties in system parameters and variability in ground motions, the role of soil-structure interaction on the structural response is still controversial. Conventional design procedures suggest that soil-structure interaction effects on the structural response can be conservatively ignored. However, more recent studies show that soil-structure interaction can be either beneficial or detrimental, depending on the soil-structure-earthquake scenarios considered. In view of the above mentioned issues, this research aims to utilise a comprehensive and systematic probabilistic methodology, as the most rational way, to quantify the effects of soil-structure interaction on the structural response considering both aleatory and epistemic uncertainties. The goal is achieved by examining the response of established rheological single-degree-of-freedom systems located on shallow-foundation and excited by ground motions with different spectral characteristics. In this regard, four main phases are followed. First, the effects of seismic soil-structure interaction on the response of structures with linear behaviour are investigated using a robust stochastic approach. Herein, the soil-foundation interface is modelled by an equivalent linear cone model. This phase is mainly considered to examine the influence of soil-structure interaction on the approach that has been adopted in the building codes for developing design spectrum and defining the seismic forces acting on the structure. Second, the effects of structural nonlinearity on the role of soil-structure interaction in modifying seismic structural response are studied. The same stochastic approach as phase 1 is followed, while three different types of structural force-deflection behaviour are examined. Third, a systematic fashion is carried out to look for any possible correlation between soil, structural, and system parameters and the degree of soil-structure interaction effects on the structural response. An attempt is made to identify the key parameters whose variation significantly affects the structural response. In addition, it is tried to define the critical range of variation of parameters of consequent. Finally, the impact of soil-foundation interface nonlinearity on the soil-structure interaction analysis is examined. In this regard, a newly developed macro-element covering both material and geometrical soil-foundation interface nonlinearity is implemented in a finite-element program Raumoko 3D. This model is then used in an extensive probabilistic simulation to compare the effects of linear and nonlinear soil-structure interaction on the structural response. This research is concluded by reviewing the current design guidelines incorporating soil-structure interaction effects in their design procedures. A discussion is then followed on the inadequacies of current procedures based on the outcomes of this study.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES) of 2010-2011 produced large seismic moments up to Mw 7.1. These large, near-to-surface (<15 km) ruptures triggered >6,000 rockfall boulders on the Port Hills of Christchurch, many of which impacted houses and affected the livelihoods of people within the impacted area. From these disastrous and unpredicted natural events a need arose to be able to assess the areas affected by rockfall events in the future, where it is known that a rockfall is possible from a specific source outcrop but the potential boulder runout and dynamics are not understood. The distribution of rockfall deposits is largely constrained by the physical properties and processes of the boulder and its motion such as block density, shape and size, block velocity, bounce height, impact and rebound angle, as well as the properties of the substrate. Numerical rockfall models go some way to accounting for all the complex factors in an algorithm, commonly parameterised in a user interface where site-specific effects can be calibrated. Calibration of these algorithms requires thorough field checks and often experimental practises. The purpose of this project, which began immediately following the most destructive rupture of the CES (February 22, 2011), is to collate data to characterise boulder falls, and to use this information, supplemented by a set of anthropogenic boulder fall data, to perform an in-depth calibration of the three-dimensional numerical rockfall model RAMMS::Rockfall. The thesis covers the following topics: • Use of field data to calibrate RAMMS. Boulder impact trails in the loess-colluvium soils at Rapaki Bay have been used to estimate ranges of boulder velocities and bounce heights. RAMMS results replicate field data closely; it is concluded that the model is appropriate for analysing the earthquake-triggered boulder trails at Rapaki Bay, and that it can be usefully applied to rockfall trajectory and hazard assessment at this and similar sites elsewhere. • Detailed analysis of dynamic rockfall processes, interpreted from recorded boulder rolling experiments, and compared to RAMMS simulated results at the same site. Recorded rotational and translational velocities of a particular boulder show that the boulder behaves logically and dynamically on impact with different substrate types. Simulations show that seasonal changes in soil moisture alter rockfall dynamics and runout predictions within RAMMS, and adjustments are made to the calibration to reflect this; suggesting that in hazard analysis a rockfall model should be calibrated to dry rather than wet soil conditions to anticipate the most serious outcome. • Verifying the model calibration for a separate site on the Port Hills. The results of the RAMMS simulations show the effectiveness of calibration against a real data set, as well as the effectiveness of vegetation as a rockfall barrier/retardant. The results of simulations are compared using hazard maps, where the maximum runouts match well the mapped CES fallen boulder maximum runouts. The results of the simulations in terms of frequency distribution of deposit locations on the slope are also compared with those of the CES data, using the shadow angle tool to apportion slope zones. These results also replicate real field data well. Results show that a maximum runout envelope can be mapped, as well as frequency distribution of deposited boulders for hazard (and thus risk) analysis purposes. The accuracy of the rockfall runout envelope and frequency distribution can be improved by comprehensive vegetation and substrate mapping. The topics above define the scope of the project, limiting the focus to rockfall processes on the Port Hills, and implications for model calibration for the wider scientific community. The results provide a useful rockfall analysis methodology with a defensible and replicable calibration process, that has the potential to be applied to other lithologies and substrates. Its applications include a method of analysis for the selection and positioning of rockfall countermeasure design; site safety assessment for scaling and demolition works; and risk analysis and land planning for future construction in Christchurch.

Research papers, University of Canterbury Library

The previously unknown Greendale Fault was buried beneath the Canterbury Plains and ruptured in the September 4th 2010 moment magnitude (Mw) 7.1 Darfield Earthquake. The Darfield Earthquake and subsequent Mw 6 or greater events that caused damage to Christchurch highlight the importance of unmapped faults near urban areas. This thesis examines the morphology, age and origin of the Canterbury Plains together with the paleoseismology and surface-rupture displacement distributions of the Greendale Fault. It offers new insights into the surface-rupture characteristics, paleoseismology and recurrence interval of the Greendale Fault and related structures involved in the 2010 Darfield Earthquake. To help constrain the timing of the penultimate event on the Greendale Fault the origin and age of the faulted glacial outwash deposits have been examined using sedimentological analysis of gravels and optically stimulated luminescence (OSL) dating combined with analysis of GPS and LiDAR survey data. OSL ages from this and other studies, and the analysis of surface paleochannel morphology and subsurface gravel deposits indicate distinct episodes of glacial outwash activity across the Canterbury Plains, at ~20 to 24 and ~28 to 33 kyr separated by a hiatus in sedimentation possibly indicating an interstadial period. These data suggest multiple glacial periods between ~18 and 35 kyr which may have occurred throughout the Canterbury region and wider New Zealand. A new model for the Waimakariri Fan is proposed where aggradation is mainly achieved during episodic sheet flooding with the primary river channel location remaining approximately fixed. The timing, recurrence interval and displacements of the penultimate surface-rupturing earthquake on the Greendale Fault have been constrained by trenching the scarp produced in 2010 at two locations. These excavations reveal a doubling of the magnitude of surface displacement at depths of 2-4 m. Aided by OSL ages of sand lenses in the gravel deposits, this factor-of-two increase is interpreted to indicate that in the central section of the Greendale Fault the penultimate surface-rupturing event occurred between ca. 20 and 30 kyr ago. The Greendale Fault remained undetected prior to the Darfield earthquake because the penultimate fault scarp was eroded and buried during Late Pleistocene alluvial activity. The Darfield earthquake rupture terminated against the Hororata Anticline Fault (HAF) in the west and resulted in up to 400 mm of uplift on the Hororata Anticline immediately above the HAF. Folding in 2010 is compared to Quaternary and younger deformation across the anticline recorded by a seismic reflection line, GPS-measured topographic profiles along fluvial surfaces, and river channel sinuosity and morphology. It is concluded that the HAF can rupture during earthquakes dissimilar to the 2010 event that may not be triggered by slip on the Greendale Fault. Like the Greendale Fault geomorphic analyses provide no evidence for rupture of the HAF in the last 18 kyr, with the average recurrence interval for the late Quaternary inferred to be at least ~10 kyr. Surface rupture of the Greendale Fault during the Darfield Earthquake produced one of the most accessible and best documented active fault displacement and geometry datasets in the world. Surface rupture fracture patterns and displacements along the fault were measured with high precision using real time kinematic (RTK) GPS, tape and compass, airborne light detection and ranging (LiDAR), and aerial photos. This allowed for detailed analysis of the cumulative strike-slip displacement across the fault zone, displacement gradient (ground shear strain) and the type of displacement (i.e. faulting or folding). These strain profiles confirm that the rupture zone is generally wide (~30 to ~300 metres) with >50% of displacement (often 70-80%) accommodated by ground flexure rather than discrete fault slip and ground cracking. The greatest fault-zone widths and highest proportions of folding are observed at fault stepovers.

Research papers, Lincoln University

This thesis investigates landscape disturbance history in Westland since 1350 AD. Specifically, I test the hypothesis that large-magnitude regional episodes of natural disturbance have periodically devastated portions of the landscape and forest, and that these were caused by infrequent earthquakes along the Alpine Fault. Forest stand history reconstruction was used to determine the timing and extent of erosion and sedimentation events that initiated new forest cohorts in a 1412 ha study area in the Karangarua River catchment, south Westland. Over 85 % of the study area was disturbed sufficiently by erosion/sedimentation since 1350 AD to initiate new forest cohorts. During this time four episodes of catchment-wide disturbance impacted the study area, and these took place about 1825 AD ± 5 years (Ruera episode), 1715 AD ± 5 years (Sparkling episode), 1615 AD ± 5 years (McTaggart episode), and 1445 AD ± 15 years (Junction episode). The three most recent episodes disturbed 10 %, 35-40 % and 32-50 % respectively of the study area. The Junction episode disturbed at least 6 % of the study area, but elimination of evidence by more recent disturbances prevented an upper limit being defined. The three earliest episodes correspond to the date-ranges for three Alpine Fault earthquakes from geological data, and are the only episodes of disturbance within each date-range. An earthquake cause is also consistent with features of the disturbance record: large portions of the study area were disturbed, disturbance occurred on all types 'of landforms, and terrace surfaces were abandoned upstream of the Alpine Fault. On this basis erosion/sedimentation induced by Alpine Fault earthquakes has disturbed 14-20 % of the land surface in the study area per century. Storms and other non-seismic erosional processes have disturbed 3-4 % per century. To examine the importance of the Alpine Fault earthquakes to forest disturbance throughout Westland, I collated all available data on conifer stand age structures in the region and identified dates of disturbance events from 55 even-aged cohorts of trees. Three region-wide episodes of forest disturbance since 1350 AD were found in this sample, and these matched the three Alpine Fault earthquake-caused episodes found in the Karangarua. Forest disturbance at these times was widespread across Westland over at least 200 km from Paringa to Hokitika, and originated from both tree fall and erosion processes. This disturbance history can explain the long-observed regional conifer forest pattern in Westland, of a predominance of similar-sized stands of trees and a relative lack of small-sized (young) stands. The many similar-sized stands are a consequence of synchronous forest disturbance and re-establishment accompanying the infrequent Alpine Fault earthquakes, while the dominance of mature stands of trees and relative lack of young small-sized trees in stands is explained by the long lapsed time since the last Alpine Fault earthquake (c. 280 years). I applied the landscape disturbance history information to the existing geological data to reconstruct the paleoseismicity of the Alpine Fault since 1350 AD. Best estimates for the timing of the most recent three rupture events from these data are 1715 AD ± 5 years, 1615 AD ± 5 years and 1445 AD ± 15 years. Earthquake recurrence intervals were variable, ranging from about 100 years to at least 280 years (the lapsed time since the last event). All three events caused forest and geomorphic disturbance over at least a 200 km section of Fault between the Karangarua and Hokitika Rivers, and were probably single rupture events. Suppressions in cross dated tree-ring chronologies in the western South Island suggest that the last rupture occurred in 1717 AD, and extended as a single rupture from Haupiri to Fiordland, a distance along the Fault of 375 km.