
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
Photograph captioned by Fairfax, "Aftermath of the earthquake in Christchurch where the cleanup has begun. Teams of building inspectors gathered at the Linwood Service Centre before heading into the eastern suburbs en masse".
The On-Site Operations Coordination Centre (OSOCC) in Latimer Square. After the 22 February 2011 earthquake, emergency service agencies set up their headquarters in Latimer Square. The OSOCC is set up by the United Nations Emergency Relief Coordinator. It helps to coordinate the local emergency response as well as advocate for humanitarian issue in political bodies such as the United National Security Council.
The Canterbury region of New Zealand experienced four earthquakes greater than MW 6.0 between September 2010 and December 2011. This study employs system dynamics as well as hazard, recovery and organisational literature and brings together data collected via surveys, case studies and interviews with organisations affected by the earthquakes. This is to show how systemic interactions and interdependencies within and between industry and geographic sectors affect their recovery post-disaster. The industry sectors in the study are: construction for its role in the rebuild, information and communication technology which is a regional high-growth industry, trucking for logistics, critical infrastructure, fast moving consumer goods (e.g. supermarkets) and hospitality to track recovery through non-discretionary and discretionary spend respectively. Also in the study are three urban centres including the region’s largest Central Business District, which has been inaccessible since the earthquake of 22 February 2011 to the time of writing in February 2013. This work also highlights how earthquake effects propagated between sectors and how sectors collaborated to mitigate difficulties such as product demand instability. Other interacting factors are identified that influence the recovery trajectories of the different industry sectors. These are resource availability, insurance payments, aid from central government, and timely and quality recovery information. This work demonstrates that in recovering from disaster it is crucial for organisations to identify what interacting factors could affect their operations. Also of importance are efforts to reduce the organisation’s vulnerability and increase their resilience to future crises and in day-to-day operations. Lastly, the multi-disciplinary approach to understanding the recovery and resilience of organisations and industry sectors after disaster, leads to a better understanding of effects as well as more effective recovery policy.
Photograph captioned by Fairfax, "Urban Search and Rescue worker Barry Smith, from the USAR taskforce, at the NZ Fire Service Training Centre, Woolston, which is temporary home for 80 USAR staff from the North Island".
New Zealand lies on the Pacific Ring of Fire – the belt of vulnerable, unpredictable fault lines which are the primary cause for earthquakes in this country. Most recently, as evident in the aftermath of the 2011 Christchurch earthquake -the destruction of the city centre led to the emergence of sub centres in different parts of the city each with different, desperate needs. The lack of preparedness in the wake of an earthquake hence, exacerbated this destitution. This research explores architecture’s role in the sub-centre. How can architecture facilitate resilience through this decentralised typology? The design-led approach critiques the implications of architecture as a tool for resilience whilst highlighting the desperate need for the engagement of architecture in planning before a disaster strikes. The resulting response explores resilience through an architectural lens that has a wider infrastructural, contextual and user-focussed need.
A large number of businesses that used to be in the centre of Christchurch relocated after the earthquakes. Are they satisfied with their new locations and do they intend to return to the central city? We questioned 209 relocated businesses about their relocation history, present circumstances and future intentions. Many businesses were content with their new premises, despite having encountered a range of problems; those businesses that were questioned later in our survey period were more content. The average business in our sample rated the chances of moving back to the central city as around 50 %, but this varies with the type of business. Building height did not emerge as a major issue, but rents may be. The mix of types of business is likely to be different in the new city centre.
Access to clean and safe drinking water is a fundamental human requirement. However, in many areas of the world natural water sources have been impacted by a variety of biological and chemical contaminants. The ingestion of these contaminants may cause acute or chronic health problems. To prevent such illnesses, many technologies have been developed to treat, disinfect and supply safe drinking water quality. However, despite these advancements, water supply distribution systems can adversely affect the drinking water quality before it is delivered to consumers. The primary aim of this research was to investigate the effect that water distribution systems may have on household drinking water quality in Christchurch, New Zealand and Addis Ababa, Ethiopia. Water samples were collected from the source water and household taps in both cities. The samples were then tested for various physical, chemical and biological water quality parameters. The data collected was also used to determine if water samples complied with national drinking water quality standards in both countries. Independent samples t-test statistical analyses were also performed to determine if water quality measured in the samples collected from the source and household taps was significantly different. Water quality did not vary considerably between the source and tap water samples collected in Christchurch City. No bacteria were detected in any sample. However, the pH and total iron concentrations measured in source and tap water samples were found to be significantly different. The lower pH values measured in tap water samples suggests that corrosion may be taking place in the distribution system. No water samples transgressed the Drinking Water Standards for New Zealand (DWSNZ) MAVs. Monitoring data collected by the Christchurch City Council (CCC) was also used for comparison. A number of pH, turbidity and total iron concentration measurements collected by the CCC in 2011 were found to exceed the guideline values. This is likely due to structural damage to the source wells and pump-stations that occurred during the 2011 earthquake events. Overall, it was concluded that the distribution system does not adversely affect the quality of Christchurch City’s household drinking water. The water quality measured in samples collected from the source (LTP) and household taps in Addis Ababa was found to vary considerably. The water collected from the source complied with the Ethiopian (WHO) drinking water quality standards. However, tap water samples were often found to have degraded water quality for the physical and chemical parameters tested. This was especially the case after supply interruption and reinstatement events. Bacteria were also often detected in household tap water samples. The results from this study indicate that water supply disruptions may result in degraded water quality. This may be due to a drop in pipeline pressure and the intrusion of contaminants through the leaky and cross-connected pipes in the distribution network. This adversely affects the drinking water quality in Addis Ababa.