Search

found 318 results

Images, eqnz.chch.2010

Vehicles Stuck - Our Street - Liquefaction (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleani...

Images, eqnz.chch.2010

Our Street - Liquefaction (22.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleaning system + Wide-...

Images, eqnz.chch.2010

Our Street - Liquefaction Sand (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleaning system + ...

Images, eqnz.chch.2010

Vehicles Stuck - Our Street - Liquefaction (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleani...

Images, eqnz.chch.2010

Vehicles Stuck - Our Street - Liquefaction (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleani...

Images, eqnz.chch.2010

Vehicles Stuck - Our Street - Liquefaction (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleani...

Images, UC QuakeStudies

A photograph of emergency management personnel examining a block of earthquake-damaged rooms at Stonehurst Accommodation on Gloucester Street. The bottom storey of the block has collapsed and the remaining rooms are now resting on an incline. The front walls of these rooms have also collapsed and the rubble has spilled in to the courtyard in front. Cordon tape has been draped across the courtyard in front of the rubble. In the foreground there is liquefaction on the ground from a liquefaction volcano.

Research papers, The University of Auckland Library

Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand – Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in Japan have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a very wide extent of urban areas unseen in past destructive earthquakes. While soil liquefaction occurred in naturally-sedimented soil formations in Christchurch, most of the areas which liquefied in Tokyo Bay area were reclaimed soil and artificial fill deposits, thus providing researchers with a wide range of soil deposits to characterize soil and site response to large-scale earthquake shaking. Although these earthquakes in New Zealand and Japan caused extensive damage to life and property, they also serve as an opportunity to understand better the response of soil and building foundations to such large-scale earthquake shaking. With the wealth of information obtained in the aftermath of both earthquakes, information-sharing and knowledge-exchange are vital in arriving at liquefaction-proof urban areas in both countries. Data regarding the observed damage to residential houses as well as the lessons learnt are essential for the rebuilding efforts in the coming years and in mitigating buildings located in regions with high liquefaction potential. As part of the MBIE-JSPS collaborative research programme, the Geomechanics Group of the University of Auckland and the Geotechnical Engineering Laboratory of the University of Tokyo co-hosted the workshop to bring together researchers to review the findings and observations from recent large-scale earthquakes related to soil liquefaction and discuss possible measures to mitigate future damage. http://librarysearch.auckland.ac.nz/UOA2_A:Combined_Local:uoa_alma21151785130002091

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Unreinforced masonry buildings also suffered extensive damage throughout the region. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. This paper summarizes the observations and preliminary findings from this early reconnaissance work.