A photograph of the earthquake damage to the top of the former Municipal Chambers Building on Worcester Street. The top of the gable has crumbled and fallen onto the pavement below.
A photograph of the earthquake damage to the back of the Christchurch Chinese Methodist Church on Papanui Road. The brick wall has crumbled at the gable, exposing the wooden structure inside.
A photograph of the earthquake damage to Ambrose Heal Furniture on the corner of Barbadoes Street and Edgeware Road. The brick walls have cracked and crumbled, exposing the inside of the building.
A photograph of the earthquake damage to a church in Christchurch. The gable and top of the side wall have crumbled, and the bricks have fallen onto the pavement below. Police tape has been draped around the building.
A photograph of an earthquake-damaged building on the corner of Montreal Street and Moorhouse Avenue. The top of the brick facade has crumbled onto the footpath below. Wire fencing has been placed around the building as a cordon.
A photograph of the earthquake damage to a group of shops on the corner of Gloucester Street and Woodham Road. The north side of the building has collapsed, and the top of the facade has crumbled onto the footpath below.
A photograph of a sign on the door of the Botanic Gardens Cafe. The sign indicates that the premises have been assessed by the Christchurch City Council after the 4 September 2010 earthquake and no apparent food safety issues were found.
A photograph of a bookcase in the Civil Suite at the University of Canterbury after the 4 September 2010 earthquake. The photograph was taken on the day when the staff were allowed to return to the building. The shelves of the bookcase have been removed, exposing damage along the sides where they knocked against the back panel. Some books have been left on the bottom shelf.
A photograph of the earthquake damage to Ambrose Heal Furniture on the corner of Barbadoes Street and Edgeware Road. The brick walls have cracked and crumbled, exposing the inside of the building. Police tape has been placed around the property as a cordon.
On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Unreinforced masonry buildings also suffered extensive damage throughout the region. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. This paper summarizes the observations and preliminary findings from this early reconnaissance work.
A photograph of the earthquake damage to a dairy on the corner of Barbadoes Street and Edgeware Road. The second storey of the dairy has collapsed, and the bricks have fallen onto the footpath, taking the awning with them. Police tape and road cones have been placed around the building as a cordon.
A photograph of the earthquake damage to a group of shops on the corner of Barbadoes Street and Edgeware Road. The second storey of the shops has collapsed, and the bricks have fallen to the footpath, taking the awnings with them. Police tape and road cones have been placed around the buildings as a cordon.
A photograph of the earthquake damage to a group of shops on the corner of Barbadoes Street and Edgeware Road. The second storey of the shops has collapsed, and the bricks have fallen to the footpath, taking the awnings with them. Police tape and road cones have been placed around the buildings as a cordon.
A photograph of the earthquake damage to a group of shops on the corner of Barbadoes Street and Edgeware Road. The second storey of the shops has collapsed, and the bricks have fallen to the footpath, taking the awnings with them. Police tape and road cones have been placed around the buildings as a cordon.
A photograph of the earthquake damage to a group of shops on the corner of Barbadoes Street and Edgeware Road. The second storey of the shops has collapsed, and the bricks have fallen to the footpath, taking the awnings with them. Police tape and road cones have been placed around the buildings as a cordon.
The 2010 Darfield earthquake is the largest earthquake on record to have occurred within 40 km of a major city and not cause any fatalities. In this paper the authors have reflected on their experiences in Christchurch following the earthquake with a view to what worked, what didn’t, and what lessons can be learned from this for the benefit of Australian earthquake preparedness. Owing to the fact that most of the observed building damage occurred in Unreinforced Masonry (URM) construction, this paper focuses in particular on the authors’ experience conducting rapid building damage assessment during the first 72 hours following the earthquake and more detailed examination of the performance of unreinforced masonry buildings with and without seismic retrofit interventions.
The Resilient Organisations Research Programme and the University of Canterbury are undertaking a longitudinal study to examine the resilience and recovery of organisations within the Canterbury region following the 4 September Canterbury earthquake. The preliminary data suggest the physical, economic and social effects of the earthquake were varied across industry sectors within Canterbury. These preliminary results catalogue organisations’ perceptions of the: - disruptions to their ability to do business - challenges faced in the aftermath of the earthquake - factors that have helped mitigate the effects of the earthquake - revenue changes and projections for the duration of this change - financing options for recovery
A team of earthquake geologists, seismologists and engineering seismologists from GNS Science, NIWA, University of Canterbury, and Victoria University of Wellington have collectively produced an update of the 2002 national probabilistic seismic hazard (PSH) model for New Zealand. The new model incorporates over 200 new onshore and offshore fault sources, and utilises newly developed New Zealand-based scaling relationships and methods for the parameterisation of the fault and subduction interface sources. The background seismicity model has also been updated to include new seismicity data, a new seismicity regionalisation, and improved methodology for calculation of the seismicity parameters. Background seismicity models allow for the occurrence of earthquakes away from the known fault sources, and are typically modelled as a grid of earthquake sources with rate parameters assigned from the historical seismicity catalogue. The Greendale Fault, which ruptured during the M7.1, 4 September 2010 Darfield earthquake, was unknown prior to the earthquake. However, the earthquake was to some extent accounted for in the PSH model. The maximum magnitude assumed in the background seismicity model for the area of the earthquake is 7.2 (larger than the Darfield event), but the location and geometry of the fault are not represented. Deaggregations of the PSH model for Christchurch at return periods of 500 years and above show that M7-7.5 fault and background source-derived earthquakes at distances less than 40 km are important contributors to the hazard. Therefore, earthquakes similar to the Darfield event feature prominently in the PSH model, even though the Greendale Fault was not an explicit model input.
On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage occurred to unreinforced masonry buildings throughout the region during the mainshock and subsequent large aftershocks. Particularly extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, a geotechnical reconnaissance was conducted over a period of six days (10–15 September 2010) by a team of geotechnical/earthquake engineers and geologists from New Zealand and USA (GEER team: Geo-engineering Extreme Event Reconnaissance). JGS (Japanese Geotechnical Society) members from Japan also participated in the reconnaissance team from 13 to 15 September 2010. The NZ, GEER and JGS members worked as one team and shared resources, information and logistics in order to conduct thorough and most efficient reconnaissance covering a large area over a very limited time period. This report summarises the key evidence and findings from the reconnaissance.
This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.