Search

found 12624 results

Videos, UC QuakeStudies

A video of TVNZ's Breakfast show broadcasting live from Cathedral Square. Presenters Paul Henry and Pippa Wetzel have flown down to Christchurch to record a special show titled "Breakfast for Canterbury", which aims to celebrate the Canterbury region's resilience in the aftermath of the 4 September 2010 earthquake.

Images, UC QuakeStudies

A photograph of mattresses in Cowles Stadium, still in their plastic wrapping waiting to be unwrapped. The stadium was set up as a Civil Defence Report Centre after the 4 September 2010 earthquake and the mattresses were to be used as beds for those displaced by the earthquake.

Images, Canterbury Museum

One multi-coloured softcover book titled 'Christchurch, A Nostalgic Tribute' with colour photographs and text by Peter Morath, published by the Caxton Press, Christchurch, 2011. Christchurch city was badly damaged during the 4 September 2010 and 22 February 2011 earthquakes and will change dramatically as rebuilding progresses. ‘Christchurch: A...

Images, eqnz.chch.2010

North Hagley Park, Christchurch, New Zealand. Tens of thousands turned out today to mark the one year anniversary of the devastating earthquake that struck the city at 12.51pm on 22 February, 2011. 185 people lost their lives. file.stuff.co.nz/stuff/12-51/ Took 4 pa...

Research papers, The University of Auckland Library

In the early morning of 4th September 2010 the region of Canterbury, New Zealand, was subjected to a magnitude 7.1 earthquake. The epicentre was located near the town of Darfield, 40 km west of the city of Christchurch. This was the country’s most damaging earthquake since the 1931 Hawke’s Bay earthquake (GeoNet, 2010). Since 4th September 2010 the region has been subjected to thousands of aftershocks, including several more damaging events such as a magnitude 6.3 aftershock on 22nd February 2011. Although of a smaller magnitude, the earthquake on 22nd February produced peak ground accelerations in the Christchurch region three times greater than the 4th September earthquake and in some cases shaking intensities greater than twice the design level (GeoNet, 2011; IPENZ, 2011). While in September 2010 most earthquake shaking damage was limited to unreinforced masonry (URM) buildings, in February all types of buildings sustained damage. Temporary shoring and strengthening techniques applied to buildings following the Darfield earthquake were tested in February 2011. In addition, two large aftershocks occurred on 13th June 2011 (magnitudes 5.7 and 6.2), further damaging many already weakened structures. The damage to unreinforced and retrofitted clay brick masonry buildings in the 4th September 2010 Darfield earthquake has already been reported by Ingham and Griffith (2011) and Dizhur et al. (2010b). A brief review of damage from the 22nd February 2011 earthquake is presented here

Research papers, University of Canterbury Library

The Canterbury Earthquakes of 2010-2011, in particular the 4th September 2010 Darfield earthquake and the 22nd February 2011 Christchurch earthquake, produced severe and widespread liquefaction in Christchurch and surrounding areas. The scale of the liquefaction was unprecedented, and caused extensive damage to a variety of man-made structures, including residential houses. Around 20,000 residential houses suffered serious damage as a direct result of the effects of liquefaction, and this resulted in approximately 7000 houses in the worst-hit areas being abandoned. Despite the good performance of light timber-framed houses under the inertial loads of the earthquake, these structures could not withstand the large loads and deformations associated with liquefaction, resulting in significant damage. The key structural component of houses subjected to liquefaction effects was found to be their foundations, as these are in direct contact with the ground. The performance of house foundations directly influenced the performance of the structure as a whole. Because of this, and due to the lack of research in this area, it was decided to investigate the performance of houses and in particular their foundations when subjected to the effects of liquefaction. The data from the inspections of approximately 500 houses conducted by a University of Canterbury summer research team following the 4th September 2010 earthquake in the worst-hit areas of Christchurch were analysed to determine the general performance of residential houses when subjected to high liquefaction loads. This was followed by the detailed inspection of around 170 houses with four different foundation types common to Christchurch and New Zealand: Concrete perimeter with short piers constructed to NZS3604, concrete slab-on-grade also to NZS3604, RibRaft slabs designed by Firth Industries and driven pile foundations. With a focus on foundations, floor levels and slopes were measured, and the damage to all areas of the house and property were recorded. Seven invasive inspections were also conducted on houses being demolished, to examine in more detail the deformation modes and the causes of damage in severely affected houses. The simplified modelling of concrete perimeter sections subjected to a variety of liquefaction-related scenarios was also performed, to examine the comparative performance of foundations built in different periods, and the loads generated under various bearing loss and lateral spreading cases. It was found that the level of foundation damage is directly related to the level of liquefaction experienced, and that foundation damage and liquefaction severity in turn influence the performance of the superstructure. Concrete perimeter foundations were found to have performed most poorly, suffering high local floor slopes and being likely to require foundation repairs even when liquefaction was low enough that no surface ejecta was seen. This was due to their weak, flexible foundation structure, which cannot withstand liquefaction loads without deforming. The vulnerability of concrete perimeter foundations was confirmed through modelling. Slab-on-grade foundations performed better, and were unlikely to require repairs at low levels of liquefaction. Ribraft and piled foundations performed the best, with repairs unlikely up to moderate levels of liquefaction. However, all foundation types were susceptible to significant damage at higher levels of liquefaction, with maximum differential settlements of 474mm, 202mm, 182mm and 250mm found for concrete perimeter, slab-on-grade, ribraft and piled foundations respectively when subjected to significant lateral spreading, the most severe loading scenario caused by liquefaction. It was found through the analysis of the data that the type of exterior wall cladding, either heavy or light, and the number of storeys, did not affect the performance of foundations. This was also shown through modelling for concrete perimeter foundations, and is due to the increased foundation strengths provided for heavily cladded and two-storey houses. Heavy roof claddings were found to increase the demands on foundations, worsening their performance. Pre-1930 concrete perimeter foundations were also found to be very vulnerable to damage under liquefaction loads, due to their weak and brittle construction.

Audio, Radio New Zealand

More than 11,000 people reported feeling the earthquake that hit just after 2am on Friday. The magnitude 4.8 quake was centred 5-kilometres south of Te Aroha, at a depth of 6-kilometres. People from Kaitaia, through to the sodden regions of Auckland, Bay of Plenty, Coromandel, and even down in Christchurch, reported feeling it. A series of weaker aftershocks began to strike 40 minutes later, although there are no immediate reports of damage as of yet. It's not the first quake to hit Te Aroha this year - a 5.1 quake rattled the town on January 4. Te Kuiti resident Zane Burdett and Kees Meinderts from Motumaoho, just south of Morrinsville, spoke to Corin Dann.