Scientists stand before a model that will predict earthquakes. The model is a large arm attached to wires and switches with a thumb that flicks coins '"Heads" we have big quake at five-o-clock... "tails" we don't'. Context: short term predictions (hours to days) are in general unlikely to be possible, at present. Relates to the Christchurch earthquakes which experts have said could go on for years. Quantity: 1 digital cartoon(s).
Shapeshifting is a conference organised by AUT featuring local and international guest speakers, academics, and innovators involved in the world of fashion and textiles. The conference is the first of its kind in the world, and its function isn't about discussing ways to build brands and to talk about trends, but a chance to think outside the box; a means to inspire, network and spark discourse. Sonia Sly talks to Christina Cie about the Christchurch Earthquake and its impact on clothing and identity for the community at large, US artist Nick Cave takes his 'body' of work into extraordinary musical and performing heights with 'Sound Suits' and Co-Director Andreas Mikellis discusses the way in which the notion of 'fashion' is changing and the importance of looking to the future.
It could be up to 18 months before 660 Christchurch homeowners know who will pay for earthquake damage repairs with a $1 billion price tag. The bill to fix houses in Christchurch that weren't repaired properly the first time round, or have suffered more damage in aftershocks, is climbing - and the government can't say who's liable. The problem is the homes have new owners who can't claim on theri insurance because the damage pre-dates them owning the home. Earlier Greater Christchurch Regeneration Minister Megan Woods told us the previous National government put no plan in place, and the current government is being left to pick up the pieces. Former Christchurch earthquake recovery minister Gerry Brownlee disputes the issue.
An earthquake engineering expert wants to change the way we predict how the ground will shake during an earthquake. Professor Brendon Bradley from the University of Canterbury is the recipient of a Marsden Fund grant to accelerate his research into seismic hazard analysis and forecasting. He says the idea is to get to a point where they can provide the same sort of information as a weather forecast. Professor Bradley says just like a severe weather warning, engineers would be able to provide information about severe ground shaking, how it varies locally in each city or suburb, and the likely consequence to buildings. Kathryn speaks to Professor Brendon Bradley, the director of Te Hirangu Ru QuakeCoRE - The New Zealand Centre for Earthquake Resilience.
The focus of this paper is to identify potential benefits of community involvement in master planning in the post-earthquake recovery context in Christchurch; and to identify considerations for planners involved in the design of master planning processes that involve the community. Findings are based on the results of an information sharing event on these topics convened by The Habitat Project in December 2011, and a review of the relevant literature.
20160703_144759_GT-S7275T-04 New sea wall at Redcliffs (185/366) I went for a drive in my second car mainly to charge the battery up and forgot to take my camera gear so only had my phone. This is the new rock wall to replace the severely damaged previous one (in the February 2011 earthquake). Work is still underway on the car parking and p...
Went for a drive down to South New Brighton/Southshore after work today to see what interesting birds I could find on the Estuary (godwits, skuas, terns etc), but passing Jellico Street, I saw this. T-Rex the seismic survey truck from the University of Texas that is visiting the city (first time out of USA). Weighs 30 tonne and from the marks o...
Went for a drive down to South New Brighton/Southshore after work today to see what interesting birds I could find on the Estuary (godwits, skuas, terns etc), but passing Jellico Street, I saw this. T-Rex the seismic survey truck from the University of Texas that is visiting the city (first time out of USA). Weighs 30 tonne and from the marks o...
Went for a drive down to South New Brighton/Southshore after work today to see what interesting birds I could find on the Estuary (godwits, skuas, terns etc), but passing Jellico Street, I saw this. T-Rex the seismic survey truck from the University of Texas that is visiting the city (first time out of USA). Weighs 30 tonne and from the marks o...
Organisations play a vital role in assisting communities to recover from disasters. They are the key providers of goods and services needed in both response and recovery efforts. They provide the employment which both anchors people to place and supports the taxation base to allow for necessary recovery spending. Finally, organisations are an integral part of much day to day functioning contributing immensely to people’s sense of ‘normality’ and psychological wellbeing. Yet, despite their overall importance in the recovery process, there are significant gaps in our existing knowledge with regard to how organisations respond and recover following disaster. This research fills one part of this gap by examining collaboration as an adaptive strategy enacted by organisations in the Canterbury region of New Zealand, which was heavily impacted by a series of major earthquakes, occurring in 2010 and 2011. Collaboration has been extensively investigated in a variety of settings and from numerous disciplinary perspectives. However, there are few studies that investigate the role of collaborative approaches to support post-disaster business recovery. This study investigates the type of collaborations that have occurred and how they evolved as organisations reacted to the resource and environmental change caused by the disaster. Using data collected through semi-structured interviews, survey and document analysis, a rich and detailed picture of the recovery journey is created for 26 Canterbury organisations including 14 collaborators, six non-traders, five continued traders and one new business. Collaborations included two or more individual businesses collaborating along with two multi-party, place based projects. Comparative analysis of the organisations’ experiences enabled the assessment of decisions, processes and outcomes of collaboration, as well as insight into the overall process of business recovery. This research adopted a primarily inductive, qualitative approach, drawing from both grounded theory and case study methodologies in order to generate theory from this rich and contextually situated data. Important findings include the importance of creating an enabling context which allows organisations to lead their own recovery, the creation of a framework for effective post-disaster collaboration and the importance of considering both economic and other outcomes. Collaboration is found to be an effective strategy enabling resumption of trade at a time when there seemed few other options available. While solving this need, many collaborators have discovered significant and unexpected benefits not just in terms of long term strategy but also with regard to wellbeing. Economic outcomes were less clear-cut. However, with approximately 70% of the Central Business District demolished and rebuilding only gaining momentum in late 2014, many organisations are still in a transition stage moving towards a new ‘normal’.
A Transitional Imaginary: Space, Network and Memory in Christchurch is the outcome and the record of a particular event: the coming together of eight artists and writers in Ōtautahi Christchurch in November 2015, with the ambitious aim to write a book collaboratively over five days. The collaborative process followed the generative ‘book sprint’ method founded by our facilitator for the event, Adam Hyde, who has long been immersed in digital practices in Aotearoa. A book sprint prioritises the collective voice of the participants and reflects the ideas and understandings that are produced at the time in which the book was written, in a plurality of perspectives. Over one hundred books have been completed using the sprint methodology, covering subjects from software documentation to reflections on collaboration and fiction. We chose to approach writing about Ōtautahi Christchurch through this collaborative process in order to reflect the complexity of the post-quake city and the multiple paths to understanding it. The city has itself been a space of intensive collaboration in the post-disaster period. A Transitional Imaginary is a raw and immediate record, as much felt expression as argued thesis. In many ways the process of writing had the character of endurance performance art. The process worked by honouring the different backgrounds of the participants, allowing that dialogue and intensity could be generative of different forms of text, creating a knowledge that eschews a position of authority, working instead to activate whatever anecdotes, opinions, resources and experiences are brought into discussion. This method enables a dynamic of voices that merge here, separate there and interrupt elsewhere again. As in the contested process of rebuilding and reimagining Christchurch itself, the dissonance and counterpoint of writing reflects the form of conversation itself. This book incorporates conflict, agreement and the activation of new ideas through cross-fertilisation to produce a new reading of the city and its transition. The transitional has been given a specific meaning in Christchurch. It is a product of local theorising that encompasses the need for new modes of action in a city that has been substantially demolished (Bennett & Parker, 2012). Transitional projects, such as those created by Gap Filler, take advantage of the physical and social spaces created by the earthquake through activating these as propositions for new ways of being in the city. The transitional is in motion, looking towards the future. A Transitional Imaginary explores the transitional as a way of thinking and how we understand the city through art practices, including the digital and in writing.
Four cameos on events of the week. The struggle for the US Republican Party to find a suitable presidential candidate. A Croatian tourism official has been sacked over comments about "drunk and crazy" New Zealand and Australian tourists. 'Mother Nature' is an 'unfit mother' in Christchurch because of the earthquakes. Quantity: 1 digital cartoon(s).
See previous photo (exactly 3 hours earlier). Demolition of the support structure for NZ Breweries smokestack in Christchurch. CERES NZ's nibbler is at work, the pipe stack having been removed yesterday (Saturday). This is three hours after the previous photo, and just a pile of rubble sits beside the tree (largely undamaged despite being next...
Demolition of the support structure for NZ Breweries smokestack in Christchurch. CERES NZ's nibbler is at work, the pipe stack having been removed yesterday (Saturday). I retuned three hours later to see what progress had been made and it was GONE! See next photo. Damage to complex was from the 22/02/20011 earthquake.
We examine the role of business interruption (BI) insurance in business recovery following the Christchurch earthquake in 2011. First, we ask whether BI insurance increases the likelihood of business survival in the immediate (3-6 months) aftermath of a disaster. We find positive but statistically insignificant evidence that those firms that had incurred damage, but were covered by BI insurance, had higher likelihood of survival post-quake compared with those firms that did not have any insurance. For the medium-term (2-3 years) survival of firms, our results show a more explicit role for insurance. Firms with BI insurance experience increased productivity and improved performance following a catastrophe. Furthermore, we find that those organisations that receive prompt and full payments of their claims have a better recovery than those that had protracted or inadequate claims payments, but this difference between the two groups is not statistically significant. We find no statistically significant evidence that the latter group (inadequate payment) did any better than those organisations that had damage but no insurance coverage. In general, our analysis indicates the importance not only of adequate insurance coverage, but also of an insurance system that delivers prompt claim payments. This is a post-peer-review, pre-copyedit version of an article published in 'The Geneva Papers on Risk and Insurance - Issues and Practice'. The final authenticated version is available online at: https://doi.org/10.1057/s41288-017-0067-y. The following terms of use apply: https://www.springer.com/gp/open-access/publication-policies/aam-terms-of-use.
Despite the relatively low seismicity, a large earthquake in the Waikato region is expected to have a high impact, when the fourth-largest regional population and economy and the high density critical infrastructure systems in this region are considered. Furthermore, Waikato has a deep soft sedimentary basin, which increases the regional seismic hazard due to trapping and amplification of seismic waves and generation of localized surface waves within the basin. This phenomenon is known as the “Basin Effect”, and has been attributed to the increased damage in several historic earthquakes, including the 2010-2011 Canterbury earthquakes. In order to quantitatively model the basin response and improve the understanding of regional seismic hazard, geophysical methods will be used to develop shear wave velocity profiles across the Waikato basin. Active surface wave methods involve the deployment of linear arrays of geophones to record the surface waves generated by a sledge hammer. Passive surface wave methods involve the deployment of two-dimensional seismometer arrays to record ambient vibrations. At each site, the planned testing includes one active test and two to four passive arrays. The obtained data are processed to develop dispersion curves, which describe surface wave propagation velocity as a function of frequency (or wavelength). Dispersion curves are then inverted using the Geopsy software package to develop a suite of shear wave velocity profiles. Currently, more than ten sites in Waikato are under consideration for this project. This poster presents the preliminary results from the two sites that have been tested. The shear wave velocity profiles from all sites will be used to produce a 3D velocity model for the Waikato basin, a part of QuakeCoRE flagship programme 1.
While it is well known that challenging and distressing events can negatively impact people’s psychological and physical state, increasingly researchers have investigated how challenging or stressful life circumstances can lead to the phenomenon of posttraumatic growth: positive psychological or life changes that can emerge from potentially traumatic events. Posttraumatic growth has been investigated primarily with people displaying varying levels of posttraumatic stress symptoms and other psychopathology due to theories suggesting that resilience would prohibit posttraumatic growth. Few studies have examined growth amongst resilient people. The current study examined posttraumatic growth in a sample of sixty psychologically healthy people who experienced the Canterbury earthquake sequence of 2010-2011. The current study is a follow-up study that used thematic analysis to explore: (1) Whether posttraumatic growth is evident nine years after the Canterbury earthquake sequence and approximately six years after baseline assessment; and (2) What themes may facilitate the posttraumatic growth process in psychologically healthy people. Data were collected using semi-structured interviews. Thematic analysis revealed four themes describing participants’ experiences of growth: New possibilities, reappraisal of life and priorities, positive changes in self-perception and closer more meaningful relationships. Themes describing posttraumatic growth provide evidence for research question one. Thematic analysis revealed three main themes and multiple subthemes that may facilitate the process of growth in psychologically healthy people: Hardship, optimistic positive appraisal and people helping people. Themes describing processes that may lead to growth provide evidence for research question two. Results of the current study provide insights about the experience of growth in psychologically healthy people and cognitive and psychosocial factors that may facilitate growth in resilient individuals.
Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km2 ), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.
A linear and non-linear model are developed to analyze the structural impact and response of two single degree of freedom structures, representing adjacent buildings or bridge sections. Different impact coefficients of restitution, normalized distances between structures and a range of different structural periods are considered. The probability of impact and the displacement changes that can result from these collisions are computed. The likelihood of an increase in displacement is quantified in a probabilistic sense. A full matrix of response simulations are performed to individually investigate and delineate the effects of inter-structure gap-ratio, period ratios, structural non-linearity and impact elasticity. Column inelasticity is incorporated through the use of a Ramberg-Osgood type hysteresis rule. The minimum normalized distance, or gap-ratio, required between two structures to ensure that the likelihood of increased displacement of more than 10% for either structure for 90% of the given earthquake ground motions is assessed as one of many possible design risk bounds. Increased gap ratio, defined as a percentage of spectral displacement, is shown to reduce the likelihood of impact, as well as close structural periods. Larger differences in the relative periods of the two structures were seen to significantly increase the likelihood of impact. Inclusion of column inelasticity and higher plasticity of impact reduce displacement increases from impact and thus possible further damage to the structures. Such information can be used as a guideline to manage undesirable effects of impact in design - a factor that has been observed to be very important during the recent Canterbury, New Zealand Earthquakes.
On the second day of teaching for 2011, the University of Canterbury (UC) faced the most significant crisis of its 138-year history. After being shaken severely by a magnitude 7.1 earthquake on 4 September 2010, UC felt it was well along the pathway to getting back to ‘normal’. That all changed at 12:51pm on 22 February 2011, when Christchurch city was hit by an even more devastating event. A magnitude 6.3 (Modified Mercalli intensity ten – MM X) earthquake, just 13km south-east of the Christchurch city centre, caused vertical peak ground accelerations amongst the highest ever recorded in an urban environment, in some places more than twice the acceleration due to gravity. The earthquake caused immediate evacuation of the UC campus and resulted in significant damage to many buildings. Thankfully there were no serious injuries or fatalities on campus, but 185 people died in the city and many more suffered serious injuries. At the time of writing, eighteen months after the first earthquake in September, Christchurch is still experiencing regular earthquakes. Seismologists warn that the region may experience heightened seismicity for a decade or more. While writing this report we have talked with many different people from across the University. People’s experiences are different and we have not managed to talk with everyone, but we hope that by drawing together many different perspectives from across the campus that this report will serve two purposes; to retain our institutional memory of what we have learnt over the past eighteen months, and also to share our learnings with other organisations in New Zealand and around the world who, we hope, will benefit from learning about our experience.
The Canterbury region experienced widespread damage due to liquefaction induced by seismic shaking during the 4 September 2010 earthquake and the large aftershocks that followed, notably those that occurred on 22 February, 13 June and 23 December 2011. Following the 2010 earthquake, the Earthquake Commission directed a thorough investigation of the ground profile in Christchurch, and to date, more than 7500 cone penetration tests (CPT) have been performed in the region. This paper presents the results of analyses which use a subset of the geotechnical database to evaluate the liquefaction process as well as the re-liquefaction that occurred following some of the major events in Christchurch. First, the applicability of existing CPT-based methods for evaluating liquefaction potential of Christchurch soils was investigated using three methods currently available. Next, the results of liquefaction potential evaluation were compared with the severity of observed damage, categorised in terms of the land damage grade developed from Tonkin & Taylor property inspections as well as from observed severity of liquefaction from aerial photography. For this purpose, the Liquefaction Potential Index (LPI) was used to represent the damage potential at each site. In addition, a comparison of the CPT-based strength profiles obtained before each of the major aftershocks was performed. The results suggest that the analysis of spatial and temporal variations of strength profiles gives a clear indication of the resulting liquefaction and re-liquefaction observed in Christchurch. The comparison of a limited number of CPT strength profiles before and after the earthquakes seems to indicate that no noticeable strengthening has occurred in Christchurch, making the area vulnerable to liquefaction induced land damage in future large-scale earthquakes.
The Christchurch earthquakes have highlighted the importance of low-damage structural systems for minimising the economic impacts caused by destructive earthquakes. Post-tensioned precast concrete walls have been shown to provide superior seismic resistance to conventional concrete construction by minimising structural damage and residual drifts through the use of a controlled rocking mechanism. The structural response of unbonded post-tensioned precast concrete wall systems, with and without additional energy dissipating elements, were investigated by means of pseudo-static cyclic, snap back and forced vibration testing with shake table testing to be completed. Two types of post-tensioned rocking wall system were investigated; a single unbonded post-tensioned precast concrete wall or Single Rocking Wall (SRW) and a system consisting of a Precast Wall with End Columns (PreWEC). The equivalent viscous damping (EVD) was evaluated using both the pseudo-static cyclic and snap back test data for all wall configurations. The PreWEC configurations showed an increase in EVD during the snap back tests in comparison to the cyclic test response. In contrast the SRW showed lower EVD during the snap back tests in comparison to the SRW cyclic test response. Despite residual drifts measured during the pseudo-static cyclic tests, negligible residual drift was measured following the snap back tests, highlighting the dynamic shake-down that occurs during the free vibration decay. Overall, the experimental tests provided definitive examples of the behaviour of posttensioned wall systems and validated their superior performance compared to reinforced concrete construction when subjected to large lateral drifts.
Creative temporary or transitional use of vacant urban open spaces is seldom foreseen in traditional urban planning and has historically been linked to economic or political disturbances. Christchurch, like most cities, has had a relatively small stock of vacant spaces throughout much of its history. This changed dramatically after an earthquake and several damaging aftershocks hit the city in 2010 and 2011; temporary uses emerged on post-earthquake sites that ran parallel to the “official” rebuild discourse and programmes of action. The paper examines a post-earthquake transitional community-initiated open space (CIOS) in central Christchurch. CIOS have been established by local community groups as bottom-up initiatives relying on financial sponsorship, agreements with local landowners who leave their land for temporary projects until they are ready to redevelop, and volunteers who build and maintain the spaces. The paper discusses bottom-up governance approaches in depth in a single temporary post-earthquake community garden project using the concepts of community resilience and social capital. The study analyses and highlights the evolution and actions of the facilitating community organisation (Greening the Rubble) and the impact of this on the project. It discusses key actors’ motivations and values, perceived benefits and challenges, and their current involvement with the garden. The paper concludes with observations and recommendations about the initiation of such projects and the challenges for those wishing to study ephemeral social recovery phenomena.
Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km²), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.
Geosynthetic reinforced soil (GRS) walls involve the use of geosynthetic reinforcement (polymer material) within the retained backfill, forming a reinforced soil block where transmission of overturning and sliding forces on the wall to the backfill occurs. Key advantages of GRS systems include the reduced need for large foundations, cost reduction (up to 50%), lower environmental costs, faster construction and significantly improved seismic performance as observed in previous earthquakes. Design methods in New Zealand have not been well established and as a result, GRS structures do not have a uniform level of seismic and static resistance; hence involve different risks of failure. Further research is required to better understand the seismic behaviour of GRS structures to advance design practices. The experimental study of this research involved a series of twelve 1-g shake table tests on reduced-scale (1:5) GRS wall models using the University of Canterbury shake-table. The seismic excitation of the models was unidirectional sinusoidal input motion with a predominant frequency of 5Hz and 10s duration. Seismic excitation of the model commenced at an acceleration amplitude level of 0.1g and was incrementally increased by 0.1g in subsequent excitation levels up to failure (excessive displacement of the wall panel). The wall models were 900mm high with a full-height rigid facing panel and five layers of Microgird reinforcement (reinforcement spacing of 150mm). The wall panel toe was founded on a rigid foundation and was free to slide. The backfill deposit was constructed from dry Albany sand to a backfill relative density, Dr = 85% or 50% through model vibration. The influence of GRS wall parameters such as reinforcement length and layout, backfill density and application of a 3kPa surcharge on the backfill surface was investigated in the testing sequence. Through extensive instrumentation of the wall models, the wall facing displacements, backfill accelerations, earth pressures and reinforcement loads were recorded at the varying levels of model excitation. Additionally, backfill deformation was also measured through high-speed imaging and Geotechnical Particle Image Velocimetry (GeoPIV) analysis. The GeoPIV analysis enabled the identification of the evolution of shear strains and volumetric strains within the backfill at low strain levels before failure of the wall thus allowing interpretations to be made regarding the strain development and shear band progression within the retained backfill. Rotation about the wall toe was the predominant failure mechanism in all excitation level with sliding only significant in the last two excitation levels, resulting in a bi-linear displacement acceleration curve. An increase in acceleration amplification with increasing excitation was observed with amplification factors of up to 1.5 recorded. Maximum seismic and static horizontal earth pressures were recorded at failure and were recorded at the wall toe. The highest reinforcement load was recorded at the lowest (deepest in the backfill) reinforcement layer with a decrease in peak load observed at failure, possibly due to pullout failure of the reinforcement layer. Conversely, peak reinforcement load was recorded at failure for the top reinforcement layer. The staggered reinforcement models exhibited greater wall stability than the uniform reinforcement models of L/H=0.75. However, similar critical accelerations were determined for the two wall models due to the coarseness of excitation level increments of 0.1g. The extended top reinforcements were found to restrict the rotational component of displacement and prevented the development of a preliminary shear band at the middle reinforcement layer, contributing positively to wall stability. Lower acceleration amplification factors were determined for the longer uniform reinforcement length models due to reduced model deformation. A greater distribution of reinforcement load towards the top two extended reinforcement layers was also observed in the staggered wall models. An increase in model backfill density was observed to result in greater wall stability than an increase in uniform reinforcement length. Greater acceleration amplification was observed in looser backfill models due to their lower model stiffness. Due to greater confinement of the reinforcement layers, greater reinforcement loads were developed in higher density wall models with less wall movement required to engage the reinforcement layers and mobilise their resistance. The application of surcharge on the backfill was observed to initially increase the wall stability due to greater normal stresses within the backfill but at greater excitation levels, the surcharge contribution to wall destabilising inertial forces outweighs its contribution to wall stability. As a result, no clear influence of surcharge on the critical acceleration of the wall models was observed. Lower acceleration amplification factors were observed for the surcharged models as the surcharge acts as a damper during excitation. The application of the surcharge also increases the magnitude of reinforcement load developed due to greater confinement and increased wall destabilising forces. The rotation of the wall panel resulted in the progressive development of shears surface with depth that extended from the backfill surface to the ends of the reinforcement (edge of the reinforced soil block). The resultant failure plane would have extended from the backfill surface to the lowest reinforcement layer before developing at the toe of the wall, forming a two-wedge failure mechanism. This is confirmed by development of failure planes at the lowest reinforcement layer (deepest with the backfill) and at the wall toe observed at the critical acceleration level. Key observations of the effect of different wall parameters from the GeoPIV results are found to be in good agreement with conclusions developed from the other forms of instrumentation. Further research is required to achieve the goal of developing seismic guidelines for GRS walls in geotechnical structures in New Zealand. This includes developing and testing wall models with a different facing type (segmental or wrap-around facing), load cell instrumentation of all reinforcement layers, dynamic loading on the wall panel and the use of local soils as the backfill material. Lastly, the limitations of the experimental procedure and wall models should be understood.
Prime Minister John Key and Minister for Energy and Resources and Earthquake Recovery Gerry Brownlee, survey a New Zealand full of disasters of one kind or another and gloat that soon it might all be theirs again. They refer to the 2011 November elections which National looks fairly sure of winning. Quantity: 1 digital cartoon(s).
20160415_0039_1D3-40 The Wobbly Jetty - 1 (106/366) [Explored] The South New Brighton jetty was rebuilt a couple of years before the 2010 and 2011 earthquakes wrecked it. Then, it was straight, level and all railings on left side were intact. Was closed to the public for about four years but is open now. #7221
20120529_5558_1D3-400 Waters Edge Demolition [Explored] Demolition of the relatively new seven-storey Waters Edge Apartments in Ferrymead continues. CERES Environmental NZ are doing the job for CERA (Canterbury Earthquake Recovery Authority). Some will be pleased to see this block go as there was lot of resentment to it being built on the site...
The ticket office at Lancaster Park (AMI Stadium), not used since the February 2011 earthquake. Windows broken and door boarded up. We are still waiting to see what the outcome is for this stadium. Government want a new one closer to the CBD, so there is talk of this being demolished, while others want it repaired.
External stairs on the Forsyth Barr building in Christchurch. Portions of the internal stairwell collapsed during the earthquake of February 22nd 2011, necessitating use of various means of getting people out of the building. Was the fourth highest building in the city pre earthquakes, but it's future is uncertain. Was for sale "as is, where ...