Includes terms of reference, information about the commissioners and information about the commission which was established after the September 2010 Canterbury Earthquake.
A community based blog/journal made up of contributions from the people of Christchurch, sharing their experiences from the two major Canterbury quakes.
LVS acts as site brokers for a creative Christchurch, finding short and medium-term uses for the many vacant sites and buildings of Christchurch.
The Charter is an agreement on health and safety between the leaders of a number of government organisations and companies leading the rebuild.
A forum created by Jeremy McManus to discuss ideas for rebuilding Christchurch following the February 22, 2011 earthquake. Topics discussed include housing, transportation, and urban design.
Blog providing information for residents of the Christchurch suburb of Mt Pleasant following the earthquakes. Includes news, information on basic services, and contacts for help and advice.
Government initiative providing temporary accommodation service to people displaced by the Christchurch earthquake. Contains information about the service, and registration forms for property owners and applicants.
website of the Residents Association and Community Group representatives from the earthquake-affected neighbourhoods of Canterbury. Includes sections on insurance, legal and financial information, and business support.
an advocacy network that aims to highlight injustices and issues affecting residents following the Canterbury earthquakes, and challenge decisions, policies and practices that disadvantage recovery.
Site is managed on behalf of the Royal Commission of Inquiry into Building Failure Caused by the Canterbury Earthquakes by the Department of Internal Affairs.
Site of the National Party MP for Christchurch Central. Communicates her political activities and parliamentary speeches. Includes updates about Christchurch earthquake recovery and rebuild.
To this extent, modern buildings generally demonstrated good resistance to collapse during the recent earthquakes in New Zealand. However, damage to non-structural elements (NSE) has been persistent during these events. NSEs include secondary systems or components attached to the floors, roofs, and walls of a building or industrial facility that are not explicitly designed to participate in the main vertical or lateral load-bearing mechanism of the structure. They play a major role in the operational and functional aspects of buildings and contribute a major portion of the building’s overall cost. Therefore, they are expected to accommodate the effects of seismic actions such as drifts and accelerations. Typical examples of NSEs include internal non-loadbearing partitions, suspended ceilings, sprinkler piping systems, architectural claddings, building contents, mechanical/electrical equipment, and furnishings. The main focus of this thesis is the drift sensitive NSEs: precast concrete cladding panels and internal partition walls. Even though most precast concrete cladding panels performed well from a life-safety point of view during recent earthquakes in NZ, some collapsed panels posed a significant threat to life safety. It is, therefore, important that the design and detailing of the panel-to-structure connections ensure that their strength and displacement capacity are adequate to meet the corresponding seismic demands, at least during design level earthquakes. In contrast, the partition wall is likely to get damaged and lose serviceability at a low inter-story drift unless designed to accommodate the relative deformations between them and the structure. Partition walls suffered wide-ranging damage such as screw failures, diagonal cracking, detachments to the gypsum linings, and anchorage failures during the 2011 Canterbury Earthquake Sequence in NZ. Therefore, the thesis is divided into two parts. Part I of the thesis focuses on developing novel low-damage precast concrete cladding panel connections, i.e. “rocking” connection details comprising vertically slotted steel embeds and weld plates. The low-damage seismic performance of novel “rocking” connection details is verified through experimental tests comprising uni-directional, bi-directional, and multi-storey scaled quasi-static cyclic tests. Comparison with the seismic performance of traditional panel connections reported in the literature demonstrated the system’s significantly improved seismic resilience. Furthermore, the finite element models of panel connections and sealants are developed in ABAQUS. The force-drift responses of the “rocking” panel system modelled in SAP2000 is compared with the experimental results to evaluate their accuracy and validity. Part II of the thesis focuses on a) understanding the seismic performance of traditional rigid timber-framed partition wall, b) development and verification of low-damage connections (i.e. “rocking” connection details comprising of dual-slot tracks), and c) seismic evaluation of partition walls with a novel “bracketed and slotted” connections (comprising of innovative fastener and plastic bracket named Flexibracket) under uni-directional and bidirectional quasi-static cyclic loadings. Moreover, parametric investigation of the partition walls was conducted through several experimental tests to understand better the pros and cons of the rocking connection details. The experimental results have confirmed that the implementation of the proposed low damage solutions of precast cladding panels and internal partition walls can significantly reduce their damage in a building.
The Leader Fault was one of at least 17 faults that ruptured the ground surface across the northeastern South Island of New Zealand during the Mw 7.8 2016 Kaikōura Earthquake. The southern ~6 km of the Leader Fault, here referred to as the South Leader Fault (SLF), ruptured the North Canterbury (tectonic) Domain and is the primary focus of this study. The main objective of the thesis is to understand the key factors that contributed to the geometry and kinematics of the 2016 SLF rupture and its intersection with The Humps Fault (HF). This thesis employs a combination of techniques to achieve the primary objective, including detailed mapping of the bedrock geology, geomorphology and 2016 rupture, measurement of 2016 ground surface displacements, kinematic analysis of slip vectors from the earthquake, and logging of a single natural exposure across a 2016 rupture that was treated as a paleoseismic trench. The resulting datasets were collected in the field, from terrestrial LiDAR and InSAR imagery, and from historical (pre-earthquake) aerial photographs for a ~11 km2 study area. Surface ruptures in the study area are a miniature version of the entire rupture from the earthquake; they are geometrically and kinematically complex, with many individual and discontinuous segments of varying orientations and slip senses which are distributed across a zone up to ~3.5 km wide. Despite this variability, three main groups of ruptures have been identified. These are: 1) NE-SW striking, shallow to moderate dipping (25-45°W) faults that are approximately parallel to Cenozoic bedding with mainly reverse dip-slip and, and for the purposes of this thesis, are considered to be part of the SLF. 2) N-S striking, steeply dipping (~85°E) oblique sinistral faults that are up to the west and part of the SLF. 3) E-NE striking, moderate to steeply dipping (45-68°N) dextral reverse faults which are part of the HF. Bedding-parallel faults are interpreted to be flexural slip structures formed during folding of the near-surface Cenozoic strata, while the steeply dipping SLF ruptured a pre-existing bedrock fault which has little topographic expression. Groups 1 and 2 faults were both locally used for gravitational failure during the earthquake. Despite this non-tectonic fault movement, the slip vectors for faults that ruptured during the earthquake are broadly consistent with NCD tectonics and the regional ~100-120° trend of the principal horizontal stress/strain axes. Previous earthquake activity on the SLF is required by its displacement of Cenozoic formations but Late Quaternary slip on the fault prior to 2016 is neither supported by pre-existing fault scarps nor by changes in topography across the fault. By contrast, at least two earthquakes (including 2016) appear to have ruptured the HF from the mid Holocene, consistent with recurrence intervals of no more than ~7 kyr, and with preliminary observations from trenches on the fault farther to the west. The disparity in paleoearthquake records of the two faults suggests that they typically do not rupture together, thus it is concluded that the HF-SLF rupture pattern observed in the Kaikōura Earthquake rarely occurs in a single earthquake.
Site of Anglican Diocese of Christchurch. Includes news and information on the diocese, its schools and churches, diocesan events, social and social justice issues, and the cathedral rebuild process.
Blog of Sandy Lees, a genealogist, taphophiliac, and ephemera collector. Reflects her interest in Canterbury history. Includes a section on the insurance woes the blogger had after the Christchurch earthquakes.
Promotes health and wellbeing for people living in Christchurch, N.Z. Site includes Healthy Christchurch Charter, Winter Warmth and Wellbeing Information Sheet and Service Directory, City health profile etc.
Interactive site in which people are able to relate their experiences of the Canterbury earthquakes of September 4, 2010 and February 22, 2011 as well as the repercussions.
A blog by an ex-employee of the Earthquake Commission discussing flaws in its handling of insurance claims made as the result of the Canterbury earthquakes of 2010 and 2011.
Information on events, weekly services, music, history and architecture, news and newsletters and current and archived sermons. Includes both pre-earthquake information, and current life of the cathedral.
People share messages of thanks for help received after the Christchurch earthquake on February 22, 2011.
Information about the EQC's work to provide natural disaster insurance to residential property owners. Canterbury earthquake related information can be found in the archived instances from September 2010-
Summarises "Magnetic South," an online discussion about the long-term future of Christchurch in June 2011, with ideas about how the city might recover from the 2011 earthquake.
Provides information about the redevelopment of Christchurch central city following February’s earthquake and the draft plan. Includes a virtual tour through the city, pre and post quake.
Website of the St Albans Residents Association Incorporated (SARA), dedicated to the recovery of St Albans and its city, Christchurch after the 2010 and 2011 earthquakes.
An initiative by the CPIT Faculty of Creative Industries to establish gallery and studio spaces for Christchurch artists following the Christchurch earthquake, by using flexible, adaptable cube modules.
Site of an exhibition and discussion series that explores Canterbury’s built environment and invites public input to identify opportunities to create a better and more liveable environment after the earthquake.
Digital 'basket' for collecting the community's stories, photos, and experiences of the Canterbury earthquake on Sept. 4, 2010, and the Christchurch earthquake on February 22, 2011.
Site of industry representative organisations provides a one-stop portal where Cantabrians can research and engage local reconstruction professionals from plumbers and electricians to builders and civil contractors. Includes advice and tips.
Site of the Canterbury Development Corporation (CDC), part of Christchurch City Council. When viewed May 2011 the focus of the site was to assist businesses affected by the 2011 Christchurch earthquake.
Information about Canterbury's regional council and the services it provides, including plans, policies, reports, and resource consent information. Earthquake related information can be found in the archived instances from September 2010-