Search

found 71 results

Images, UC QuakeStudies

Emergency personnel searching for people trapped in the collapsed Canterbury Television Building on Madras Street. On the right, a man is using a sheet of corrugated plastic to slide pieces of debris off the building. Smoke is billowing from the remains of the building and a jet of water can be seen in the background, attempting to extinguish the fire.

Images, UC QuakeStudies

A member of the New Zealand Fire Service in a cherry picker spraying water at the fire burning in the collapsed Canterbury Television Building. Smoke is billowing out of the intact section of the building. Below, emergency personnel are searching the rubble for trapped people. A piece of corrugated plastic is being used to slide pieces of debris off the site.

Images, UC QuakeStudies

Emergency personnel searching for people trapped in the collapsed Canterbury Television Building on Madras Street. On the right, a man is using a sheet of corrugated plastic to slide pieces of debris off the building. Smoke is billowing from the remains of the building and a jet of water can be seen in the background, attempting to extinguish the fire.

Images, Canterbury Museum

One black, red and white plastic-backed fabric uniform badge commemorating the 22 February 2011 earthquake; the words 'Christchurch 6.3 Quake' are embroidered in red along the top along with '22-2-2011' and '12.51pm'; Along the bottom are the words 'In Memory'; In the centre is a map of New Zealand in green with a red embroidered star over Cante...

Images, UC QuakeStudies

Large piles of liquefaction silt at a dump on Breezes Road. One of the piles is covered with black plastic and weighted down with tyres. Trucks and diggers are adding more silt to the piles. The photographer comments, "Breezes Road and Anzac Drive have recently opened but are now home to a brand new range of hills thanks to mountains of silt that have been collected by the hard working construction guys that have done a sterling job on the road there".

Images, UC QuakeStudies

Large piles of liquefaction silt at a dump on Breezes Road. One of the piles is covered with black plastic and weighted down with tyres. Trucks and diggers are adding more silt to the piles. The photographer comments, "Breezes Road and Anzac Drive have recently opened but are now home to a brand new range of hills thanks to mountains of silt that have been collected by the hard working construction guys that have done a sterling job on the road there".

Images, UC QuakeStudies

A photograph of emergency management personnel walking in a line down Lichfield Street towards the intersection of Madras Street . The members in white hazmat suits are holding their hands over their heads while members of the New Zealand Army take the lead and follow from behind. Rubble from several earthquake-damaged buildings has scattered across the street to the right. Plastic fencing has been placed along the left side of the road as a cordon. In the background there are several earthquake-damaged buildings along Lichfield Street.

Research papers, University of Canterbury Library

The NMIT Arts & Media Building is the first in a new generation of multistorey timber structures. It employs an advanced damage avoidance earthquake design that is a world first for a timber building. Aurecon structural engineers are the first to use this revolutionary Pres-Lam technology developed at the University of Canterbury. This technology marks a fundamental change in design philosophy. Conventional seismic design of multi-storey structures typically depends on member ductility and the acceptance of a certain amount of damage to beams, columns and walls. The NMIT seismic system relies on pairs of coupled LVL shear walls that incorporate high strength steel tendons post-tensioned through a central duct. The walls are centrally fixed allowing them to rock during a seismic event. A series of U-shaped steel plates placed between the walls form a coupling mechanism, and act as dissipators to absorb seismic energy. The design allows the primary structure to remain essentially undamaged while readily replaceable connections act as plastic fuses. In this era where sustainability is becoming a key focus, the extensive use of timber and engineered-wood products such as LVL make use of a natural resource all grown and manufactured within a 100km radius of Nelson. This project demonstrates that there are now cost effective, sustainable and innovative solutions for multi-story timber buildings with potential applications for building owners in seismic areas around the world.

Research papers, University of Canterbury Library

Extended Direct Analysis (EDA), developed at the University of Canterbury, is an advance on the AISC Direct Analysis method for the analysis of frames subjected to static forces. EDA provides a faster, simple and more rational way to properly consider the second-order effects, initial residual stresses (IRS) and the initial imperfections or steel structures under one directional loading than conventional analysis methods. This research applied the EDA method to quantify the effect of member overstrength on frame behaviour for a single storey frame. Also, the effects of IRS, which were included in the EDA static analysis, but which are not considered explicitly in non-linear seismic analysis, were evaluated in two ways. Firstly, they were considered for simple structures subject to increasing cyclic displacement in different directions. Secondly, incremental dynamic analysis with realistic ground motion was used to quantify the likely effect of IRS in earthquakes. It was found that, contrary to traditional wisdom and practice, greater member strengths can result in lower frame strengths for frames under monotonic lateral loading. The structural lateral capacity of the overstrength case was reduced by 6% compared to the case using the dependable member strengths. Also, it resulted significantly different in member demands. Therefore, it is recommended that when either plastic analysis or EDA is used, that both upper and lower bounds on the likely member strength should be considered to determine the total frame strength and the member demands. Results of push-pull analysis under displacement control showed that for IRS ratio, gamma < 0.5 and axial compressive force ratio, N*/Ns, up to 0.5, IRS did affect the structural behaviour in the first half cycle. However, the behavior in the later cycles was not significantly affected. It also showed that the effect of initial residual stresses in the frame was less significant than for the column alone when the column was subjected to similar axial compressive force. The incremental dynamic analysis results from both cantilever column and the three-storey steel frame showed that by increasing gamma = 0 to 0.5, the effect of IRS on seismic responses, based on the 50% confidence level, was less than 3% for N*/Ns, up to 0.5.